U.S. Department of Transportation

Rail-Highway
 Crossing
 Resource
 Allocation
 Procedure
 User's Guide

Federal Highway
Administration
Offices of Research,
Development and
Technology

Federal Railroad
Administration
Office of Safety

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE

GENERAL DISCLAIMER

This document may have problems that one or more of the following disclaimer statements refer to:

- This document has been reproduced from the best copy furnished by the sponsoring agency. It is being released in the interest of making available as much information as possible.
- This document may contain data which exceeds the sheet parameters. It was furnished in this condition by the sponsoring agency and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures which have been reproduced in black and white.
- The document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

$\begin{aligned} & \text { 1. Repart No. } \\ & \text { FHWA-IP-82-7 } \end{aligned}$	2. Government Accession No.	3. Recipient's Cotalog No. $\text { 謁岛 } 30306$
4. Title and Subtitle RAIL-HIGHWAY CROSSING RESOURCE ALLOCATION PROCEDURE USER'S GUIDE		5. Report Date December 1982 6. Performing Orgonization Code DTS-72
7. Author's) John Hitz, Mary Cro		9. Performing Orgonization Report Na.
9. Performing Organization Name and Address U.S. Department of Transportation Research and Special Programs Administration Transportation Systems Center Cambridge MA 02142		10. Work Unit No. (TRA1S) HW221/RR2207
		11. Controct ar Gront No. 13. Type of Report and Period Covered Final Report Oct. 1980 - Oct. 1981
12. Sponsoring Agency Name and Addross U.S. Department of Transportation Federal Highway Administration Offices of Research, Development and Technology and Federal Railroad Administration Office of Safety Washington DC 20590		
		14. Sponsoring Agency Code $\mathrm{P}-03$
16. Abstract The Highway Safet of 1978 provide fundin at public rail-highway installation of active flashing. lights with g effective allocations the U.S. Department of Resource Allocation Pr prediction formula, wh the resource allocatio cost-effective basis a This guide provides in of the DOT Rail-Highway	s of 1973 and 1976 and th horizations for individua sings. Safety improvemen rist warning devices such ino assist states and ra deral funds for rail-high sportation has developed re. The procedure consis redicts the number of acc el, which nominates cross commends the type of warn ted users with complete i ssing Resource Allocation	urface Transportation Act tates to improve safety frequently consist of the flashing lights or oads in determining crossing improvements, DOT Rail-Highway Crossin of the DOT accident nts at crossings, and s for improvement on a device to be installed. rmation for application ocedure.
17. Key Words Rail-Highway Crossing Grade Crossing Railroad Safety Resource Allocation	18. Distribution $\begin{aligned} & \text { DOCUI } \\ & \text { THROI } \\ & \text { INFOR } \\ & \text { VIRGII } \end{aligned}$	ent is available to the u.s. public the national technical ION SERVICE, SPRINGFIELD, 22161
19. Security Classif. (of this report) UNCLASSIFIED	20. Security Classif. (of this poge) UNCLASSIFIED	$\left\lvert\,$21. No. of Pages 43\quad22. Price\right.

The Department of 7 ransportation's (DOT) rail-higrway crossing accident preaiction formuia and resource allucition mocel, desoribed in this report, were developed at the Transportation Systm Center (TSC) under the sponsorslip of the Federal heilroad ndministration's (Flif) Ofice of Sifety and the Federal Highway Administration's (FHWA) Cffices of Research, Develoment and Technology. When used toettiner, these proccures provice an automated and systematic means of making a cost-effective but preliminary, allocation of funds among individual crossings and available improvanert options.
This user's guide provides complete information for application of the DOT procedures. Preparation of the guide was the overall responsibility of Johm Hitz of TSC. liary Cross of TSC was responsible for development and description of computer programs requirec for application of the procedures.

METRIC CONVERSION FACTORS

1. Introduction 1
1.1 Purpose 1
1.2 Lackground 1
1.3 Organization of Guide 2
z. DOT Kail-Highway Crossing Resource Allocation Procedure- Overview. 3
2. DUT Accident Preaiction Formula 7
3.1 Introduction 7
3.2 Description of DUT Formula - Developmentand Characteristics9
3.2.1 General DOT Formula 9
3.c. 2 Basic Formula 10
3. Resource Allocation Model 27
4. 1 Introduction 27
5. 2 Description of Resource Allocation lodel 29
4.2.1 10del Alsorithm. 29
4.2.2 Vemonstration of Algorithm 35
4.c̈.j Waruing Device Cost Data 3
6. ̌. 4 Warnine Device Effectiveness Data 42
7. .5 Field Verirication and Revision oi Resource Allocation hesults 43
8. Application of íll hesource Allocation Procedure 49
5.1 DUT Accicent Prediction Fornula 4%
1.1.1 Menual Calculation of Predictod Rcoisents 4
5.1.2 Computer Progranis for Calculation of Pruicted nociucnts 51
5.2 Computer Hrogranis for Resource illocation indel 64
REFEFENCES \} $\}$

LIS'T OF TAELES

Table Page
3-1 FINAL ACCIDENT PREUICTION FROM INITIAL PREDICTION AND ACCIDENT HISTORY [1 YEAR OF ACCIDENT DAT'A $(T=1)$ 11
3-2 FINAL ACCIDENT PREDICTION FROM INITIAL PKEDICTION AND ACCIDENT HISTUKY [2 YEAKS OF ACCIDENT DATA ($\mathrm{T}=2$)] 12
3-j FINAL ACCIDENT PREUICTION FROR INITIAL PREDICTION AND ACCIDENT HISTORY [3 YEARS OF ACCIDENT DATii (T=j)] 13
3-4 FINAL ACCIDENT PREDICTION FRUM INITIALPIEDICTIUN AND ACCIDENT HISTOKY [4 YEARS OFACCIDENT DATA ($T=4$)]14
3-5 FINAL ACCIDENT PREDICIIUN FRON INITIAL PREDICTION AND ACCIDENT HISTOKY [5 YEAKS OF ACCIDENS DATA ($T=5$)] 15
3-6 EQUATIONS FOR CROSSING CHARACTERISTIC FACTORS 19
s-7 FACTOR VALUES FOR CROSSINGS WITH PASSIVE WARNIVG DEVICES 20
ふ-E FACTOL VALUES FUR CROSSINGS WITH FLASHING LIGHT *ARNING DEVICES 21
3-9 FACTUK VALUES FOR CKOSSINGS WITH GAIE WAKMINU UEVICES 22
4-1 EFFECTIVENESS/CUST SYACUL MITKIX 30
4-2 SNAPLE CROSSINGS FOR ALGORITHB DE:IONSTHATION 35
4-3 EFFECTIVENESS/COST INPUT DATA 36
4-4; STEF 2: CALCULATIUN OF ACCILENT REDUCTION/ COST Wintus 37
4-j Sle'p 3: kANKING OF fCCIDENT FEDUCTION/COST Kiniles. 30
4-ú WARNING DEVICE IMPKUVENENT COSTS, 1977. 39
4-i VARNING DEVICE FHPRUVEIENT COSTŚ, 1960 41

```
LIS'` OF ThJLES (Cont.)
```

Table Page
 42
5-1 CHAFACTERISTICS OF SAMPLE CROSSING 49
5-2 VAKIAELE DICTIGNARY FUK THE EASIC ACCIDEAT PKCDICTION F゙CRMULA PROGRAY. 50
5-3 IHPUT DATA FIELL DESCRIPTIUVS 50
5-4 VAKIAELE DICTICNARY FCK THE DCT ACCIDENT PREDTCTIUN FURiULA PRCGRAM 62
5-ל VARIfiLEE CICTIONARY FOR THE ACCIDENT REDUCTION/ COST RATIU PROGRAİ 70
5-6 FIELD DESCRIPTIONS FOR TIE OUTPUT FROH THE ACCIDENT RELUCTION/CUSS KITIU PROCRAM 72
5-7 VARIABLE DICTIONAFY FOR THE RESCURCE ALLOCATIUR PRGGRAH 77
LIST OF ILLUSTRATIONS
FigurePaet
2-1 RAIL-HIGHWAY CROSSING RESOURCE ALLOCATION PROCEDUKE 4
¡-1 DOT RAIL-HIGHWAY CROSSING ACCIDENI PREDICTION FORMULA. 3
3-2 LINES OF EQUAL ACCIDENT PREDICTION LEVEL FOR WAKNING DEVICE CLASSES $1,2,3,4$ 24
ふ-3 LINES OF EQUAL ACCIDENT PREDICTICN LEVEL FOR WARNING DEVICE CLASSES 5, U, 7 25
3-4 LINES UF EQUAL ACCIDENT PREDICTION LEVEL FOR WAKNING DEVICE CLASS 26
4-1 HESOURCE ALLOCATION ALGORITHM 33
4-2 "FIELD VERIFICATIUN WOKhSHEET" 44

Lİ® UF ILiUSTheTIGN＇（Cont．）

Figure Page
う－1 பAULC ACCIDENT PREDICIIUA FURMULf PRUCKAN 53
ら－え́ SAAPLE IHPUT TO THE BREIC ACCIDENT PREDICTION Fundula Picurata． 57
D－s SAMPLE CUTPUY FFCN：THE EASIC ACCICENT PREDICTICN FCRAULA PAUGRAR 60
$5-4$ DOT ACCIDEAT PREDICTION FCRi\｛ULA PROGRAY 61
「ーム SABPLE OUTPUY rFCH THE DUT ACCIDE：NT PREDICTION FORMULA PKOGRAN 63
S－U $\therefore O C L L E N T$ PREUICITUN REPOKT PROGKAH 65
5－\％SAMPLE CUTPUT FFOA THE ACCIDENT PREDICTION REHURI PKOGRAM 66
－b ACCIDEHT REDUCTION／COST RATIO PROGRAM 68
シーy SAMPLE INPUT TO THE ACCIUENT REDUOITUH／COST FATIO PRCGFAM． 68
5－10 SAMPLEE UUPPUT FHOM THE ACCIDENT REDUCTION／ COŚT RATIO PROGRAII 71
ラ－11 RESOURCE ALLUCATION ALGORITHil PROGRAH 74
5－1̈ SAMFLE OUTPUT FROM THE RESOURCE ALLOCATION PROGRAS 79
5－13 RESUURCE ALLOCATIUN REPORT PRCGRAM 80
ט－14 SAHPLE OUTPUT FRCM THE RESUURCE ALLOCATION REPORT PROGRAII 82

1. INTRODUCTION

1.1 PUR POSE

This guide is intended to provide interested users with complete information for application of the DOT Rail-Highway Crossing Resource Allocation Procedure.

1.2 BACKGROUND

The Highway Safety Acts of 1973 and 1976 and the Surface Tr ansportation Assistance Act of 1978 provide funding authorizations for individual states to improve safety at public rail-highway crossings. Safety improvements frequently consist of the installation of active motorist warning devices such as flashing lights or flashing lights with gates. In support of these safety efforts, several projects have been undertaken by the U.S. Department of Transportation (DOT) to assist states and railroads in determining effective allocations of Federal funds for rail-highway crossing safety improvement. One of these projects concerns development of a resource allocation procedure that determines crossing safety improvements that yield the greatest accident reduction benefits based on consideration of predicted accidents at crossings, the cost and effectiveness of warning device options and the budget limit. Two analytical methods have been developed as part of this procedure. Their development followed completion of a joint U.S. DOT-AAR (Association of American Railroads) National Rail-Highway Crossing Inventory (herearter referred to as The Inventory), which numbered and collected inventory information for all public and private crossings in the United States. (Ref. 1)

The first analytical method included in the resource allocation procedure is the DOT acciaent prediction formula, which computes the expecter number of accidents at crossings based on information available in The Inventory and crossing accident data files. The second analytical method is a resource allocation model designed to rank crossings for improvement on a costeffective basis and recommend the type of warning device to be installed.

This guide provides complete information on how to use these two analytical methods, which together comprise the DOT Rail-Highway Crossing Resource Allocation Procedure.
1.3 ORGANIZATION OF GUIDE

Chapter 2 provides a technical overview of the DOT Resource Allocation Procedure and its two major elements, the DOT accident prediction formula and the resource allocation model.

Chapter 3 describes the purpose, development and characteristics of the DOT accident prediction formula.

Chapter 4 describes the resource allocation model and its data requirements.

Chapter 5 discusses procedures for use of the DOT Resource Allocation Procedure. A sample application is provided as a means of demonstrating its use for different situations.

2. DOT RAIL-HIGHWAY CROSSING RESOURCE ALLOCATION PRUCEDURE - UVERVIEW

There are currently about 215,000 public at-grade rail-highway crossings in the United States. At an average cost of approximately $\$ 50,000$ per installation, there are insufficient funds available to install automatic warning systems at each of these crossings. The DOT Kesource Allocation Procedure was designed to assist in determining how limited safety improvement funds should be allocated to specific crossings and warning device improvements to achieve the greatest accident reduction.

Figure 2-1 illustrates the basic functions of the DOT Resource Allocation Procedure. Inventory information and the accident histories of the individual crossings being considered are used by the DOT accident prediction formula to provide a list of crossings ranked by the estinated number of accidents that will occur at each crossing. State crossing programs commonly use such rankings, produced by various formulas, as a basis for determining safety improvements; i.e., crossings are improved in the order of their predicted accident levels, with the crossing having the highest accident rate treated first and so forth. However, if the program objective is to achieve maximum accident reduction for a given total cost, this procedure must be extended to consider the different warning device options which are available for each crossing and their differing costs and effectiveness for reducing accidents. For example, installing a flashing light at the crossing with the tenth highest accident rate might yield a higher accident reduction/cost ratio than installing an automatic gate at the most hazardous crossing. Consequently, the resource allocation model uses the predicted accidents at each crossing together with information on the safety effectiveness and costs of alternative warning device improvements and the funding level available to determine the most cost-effective set of improvement decisions; i.e., which crossings to improve and the types of warning devices to install at those crossings to result in the greatest accident reduction given the available funding.

FIGURE 2-1. RAIL-HIGHWAY CROSSING RESOURCE ALLOCATION PROCEDURE

The DOT Resource Allocation Procedure does not dictate final decisions for crossing improvements, but does recommend programs to aid in making informed decisions. As an analytical procedure, its' recommendations are dependent on accurate input data and assumptions. Errors in The Inventory and assumptions regarding warning device cost and effectiveness may cause inappropriate recommendations. To ensure accuracy of the input data, they should be validated by a diagnostic team as part of their normal duties in making field evaluations of recommended improvements. While in the field, the diagnostic team should also make note of other considerations that may impact final improvement decisions but are not included in the resource allocation procedure. These considerations include highway congestion, school bus and hazardous materials traffic, restricted sight distance, and other unusually hazardous, costly or mitigating characteristics of individual crossings. A procedure for performing this evaluation is described in Section 4.2.5. Results of the resource allocation procedure, findings of the diagnostic team, inclusion of any state warrants and the judgement of state and local officials should all be considered before final improvement decisions are made.

The primary role of the resource allocation procedure is to assist states and railroads in developing crossing safety improvement programs. The first stage in developing these programs is usually to prepare a list of candidate crossings for safety improvements. To assist in preparing this list, the DOT accident prediction formula can be used to rank crossings by predicted accidents to identify hazardous crossings potentially needing safety improvements. The resource allocation model can then be used to evaluate alternative programs for improving these crossings. For example, the impacts on program benefits of changes in key program parameters such as budget limits, warning device installation strategies (e.g. flashing lights only, gates only) and warning device cost and effectiveness assumptions can be determined. Analysis of these results will help in deciding upon budget levels for crossing improvements and in determining the effectiveness of implementing state warrants specifying installation strategies. Once key program parameters have been decided upon, the resource allocation model will provide an initial recommended program, based on cost-effectiveness considerations, for review by the state. The procedure is also useful for railroads in providing recommended uniform improvement programs over their entire rail systems that pass through several states.

Initial results of the resource allocation procedure provide useful guidance to diagnostic teams by specifying crossings with recommended improvements that should be field inspected and data that must be checked for accuracy. Using the field verification procedure described in Section 4.2.5, diagnostic teams can determine revised cost-effective improvement decisions for particular crossings where original data were found incorrect. The revised results obtained by the diagnostic team then form a useful basis upon which state and local officials can finalize crossing improvement programs.

3. DOT ACCIDENT PREDICTION FCRAULA

3.1 IFTRODUCTION

Many crossine hazara furmulas have been developed in the past and used extensively by those concerned with rail-highway crossing safety. (Ref. 2). Exanples are the liew Hampshire Formula, the Peabody-Dimmick Formula, the Mississippi Formula, and the Ohio Method. Recent availability of The Inventory and accijent diata by crossing were major considerations which influenced developnent of the new DOT accident prediction formula. The Inventory contains information on the physical and operating maracteristics of all rail-highway crossings in the United States and, thus, affords an improved basis for rail-highway crossing accident prediction.

The function of the DOT accident prediction formula is described in Figure 3-1. The formula provides a means of calculating the expected annual number of accidents at a crossing on the basis of characteristics of the crossing described in The Inventory and the crossing's historical accident experience described in the FRA Railroad Accident Incident Reporting Systems (RAIRS).

The DOT accident prediction formula is termed an "absolute" formula since it estimates numbers of accidents. Other formulas, such as the New Hempshire Formula, are termed "relative" formulas since they provide an index which is associated with expected accidents only on a relative basis i.e., a larger index means more expected accidents but the relationship is not linear.

The distinction between absolute and relative formulas is important when considering use of a formula to assist in determining the most cost-effective allocation of improvement funds, as discussed in Section 4 . If program effectiveness is to be measured in terms of tangible benefits such as accident reduction benefits, an absolute formula must be used to ensure that the benefits of alternative actions are consistently evaluated. The use of an absolute formula, such as the DOT formula, is therefore recommended to support resource allocation decisions.

Both relative and absolute formulas can be used to provide rankings of crossings on the basis of their relative hazards. A comparison of the DOT formula with several other well-known formulas (Ref. 3) shows the DOT formula to have significantly improved performance in this regard.

3.2 DESCRIPTION OF DOT FORMULA - DEVELOPMENT AND CHARACTERISTICS

3.2.1 General DOT Formula

The DOT accident prediction formula combines two independent predictions of a crossing's accidents to produce a more accurate resultant prediction. The two independent predictions are obtained from the following two sources:

1. A basic formula (equation 3-2) provides an initial prediction of accidents on the basis of a crossing's characteristics as described in The Inventory. This formula, termed the "basic" formula, is used to predict crossing accidents in a manner similar to other common formulas, such as the Peabody-Dimmick and New Hampshire formulas.
2. The second prediction is equal to the actual observed accident history at a crossing. This prediction assumes that future accidents per year will be the same as the average historical accident rate. It is referred to as a crossing's accident history, and is equal to the total observed accidents divided by the number of years over which the observations were made.

The DOT accident prediction formula can be expressed as follows:

$$
\begin{equation*}
A=\frac{T_{0}}{T_{0}+T}(a)+\frac{T}{T_{0}+T}\left(\frac{N}{T}\right) \tag{3-1}
\end{equation*}
$$

where
$A=$ final accident prediction, accidents per year at the crossing
a = initial accident prediction from basic formula (equation 3-2), accidents per year at the crossing

1

- = accicent history prediction, accidents per year, where il is T the number of observed accidents in T years at the crossing
$T_{U}=$ formula weighting fiector $=1.0 /(0.05+z)$
The DUT accident prediction formula (equation 3-1) calculates a weighted average of a crossine's predicted accidents from the basic formula (a) (equation 3-2), and accident history (N/T). The two formula weights, $\mathrm{T}_{U} /\left(\mathrm{T}_{0}+\mathrm{T}\right)$ and $T /\left(\mathrm{T}_{0}+\mathrm{T}\right)$, ado to the value 1.0 . Values for the final accident prediction (A), obtained from equation 3-4, for different values of the initial prediction (a), from equation 3-a, and different prior accident rates (N / I) are tabularized in Tables $3-?$ to $3-5$. Each table represents results for a specific number of years for wilch acciderit ristory data ara available. it this time (December 1982), the FRA has 7 years of accident data correlated with Ine Inventory. If, tre number oi years of accident data, I, is a fraction, the final accident prediction, A, can be interpolated from the tables or delermined directly from the formula. Tie formula provides the most accurate results if all the accident history available is used; however, the extent of improvement is minimal if data for more than 5 years are used. It is therefore recommended that only data for the most recent 5 years of accident history be used. This ensures both cood perfortanee from the formula and use of the most relevant data. Accicent history information older than 5 years may be misleadine beeause of changes that occur to crossine characteristics over time. If a significant change has occurred to a crossing during the most recent 5 years, such as a warning dovice upgrade, only the accident data since the change should be used.
feferring to lathes $\because-1$ to $3-5$, the vailue of the final acciuent prediction (A) is determined from the intersection of the appropriate collun and row for the values of the initial prediction (a) and the observed number oi ciccicienus (it). ithe, if $a=0.05$ and $N=4$, for $T=5$ (Table $j-j$), the romber or peraicted acciuchti (A) is Coje.
in investigetion of the formula and the tables will show the following

1. Ahe fincl prediction (A) bill be a weichted average of a and $1 / T$, -.t., it will lie betwoen tie values of a and N/T.

TABLE 3-1. FINAL ACCIDENT PREDICTION FROM INITIAL PREDICTION

INITIAL PREDICTION FROM BASIC MODEL, a	0	$\begin{array}{cccc}\text { NUMBER } & \text { OF } & \text { ACCIDENTS, } & \mathrm{N}, \\ \text { IN } & \mathrm{T} \text { YEARS } \\ 1 & 2 & 3 & 4\end{array}$				5
0.00	0.000	0.048	0.095	0.143	0.190	0.238
0.01	0.009	0.066	0.123	0.179	0.236	0.292
0.02	0.019	0.084	0.150	0.215	0.280	0.346
0.03	0.028	0.102	0.176	0.250	0.324	0.398
0.04	0.037	0.119	0.202	0.284	0.367	0.450
0.05	0.045	0.136	0.227	0.318	0.409	0.500
0.06	0.054	0.153	0.252	0.351	0.450	0.550
0.07	0.063	0.170	0.277	0.384	0.491	0.598
0.08	0.071	0.186	0.301	0.416	0.531	0.646
0.09	0.079	0.202	0.325	0.447	0.570	0.693
0.10	0.087	0.217	0.348	0.478	0.609	0.739
0.20	0.160	0.360	0.560	0.760	0.960	1.160
0.30	0.222	0.481	0.741	1.000	1.259	1.519
0.40	0.276	0.586	0.897	1.207	1.517	1.828
0.50	0.323	0.677	1.032	1.387	1.742	2.097
0.60	0.364	0.758	1.152	1.545	1.939	2.333
0.70	0.400	0.829	1.257	1.686	2.114	2.543
0.80	0.432	0.892	1.351	1.811	2.270	2.730
0.90	0.462	0.949	1.436	1.923	2.410	2.897
1.00	0.488	1.000	1.512	2.024	2.537	3.049
1.10	0.512	1.047	1.581	2.116	2.651	3.186
1.20	0.533	1.089	1.644	2.200	2.756	3.311
1.30	0.553	1.128	1.702	2.277	2.851	3.426
1.40	0.571	1.163	1.755	2.347	2.939	3.531
1.50	0.588	1.196	1.804	2.412	3.020	3.627
1.60	0.604	1.226	1.849	2.472	3.094	3.717
1.70	0.618	1.255	1.891	2.527	3.164	3.800
1.80	0.632	1.281	1.930	2.579	3.228	3.877
1.90	0.644	1.305	1.966	2.627	3.288	3.949
2.00	0.656	1.328	2.000	2.672	3.344	4.016
2.10	0.667	1.349	2.032	2.714	3.397	4.079
2.20	0.677	1.369	2.062	2.754	3.446	4.138
2.30	0.687	1.388	2.090	2.791	3.493	4.194
2.40	0.696	1.406	2.116	2.826	3.536	4.246
2.50	0.704	1.423	2.141	2.859	3.577	4.296

TABLE 3-2. FINAL ACCIDENT PREDICTION FROM INITIAL PREDICTION AND ACCIDENT HISTORY [2 YEARS OF ACCIDENT DATA (T=2)]

INITIAL PREDICTION FROM BASIC MODEL, a	0	1	$\begin{array}{r}\text { NUMBER } \\ \\ \\ \hline\end{array}$		ENTS 4	$\mathrm{IN}_{5} \mathrm{~T} Y$	6	7	8
0.00	0.000	0.045	0.091	0.136	0.182	0.227	0.273	0.318	0.364
0.01	0.009	0.063	0.116	0.170	0.223	0.277	0.330	0.384	0.438
0.02	0.018	0.079	0.140	0.202	0.263	0.325	0.386	0.447	0.509
0.03	0.026	0.095	0.164	0.233	0.302	0.371	0.440	0.509	0.578
0.04	0.034	0.110	0.186	0.263	0.339	0.415	0.492	0.568	0.644
0.05	0.042	0.125	0.208	0.292	0.375	0.458	0.542	0.625	0.708
0.06	0.049	0.139	0.230	0.320	0.410	0.500	0.590	0.680	0.770
0.07	0.056	0.153	0.250	0.347	0.444	0.540	0.637	0.734	0.831
0.08	0.063	0.167	0.270	0.373	0.476	0.579	0.683	0.786	0.889
0.09	0.070	0.180	0.289	0.398	0.508	0.617	0.727	0.836	0.945
0.10	0.077	0.192	0.308	0.423	0.538	0.654	0.769	0.885	1.000
0.20	0.133	0.300	0.467	0.633	0.800	0.967	1.133	1.300	1.467
0.30	0.176	0.382	0.588	0.794	1.000	1.206	1.412	1.618	1.824
0.40	0.211	0.447	0.684	0.921	1.158	1.395	1.632	1.868	2.105
0.50	0.238	0.500	0.762	1.024	1.286	1.548	1.810	2.071	2.333
0.60	0.261	0.543	0.826	1.109	1.391	1.674	1.957	2.239	2.522
0.70	0.280	0.580	0.880	1.180	1.480	1.780	2.080	2.380	2.680
0.80	0.296	0.611	0.926	1.241	1.556	1.870	2.185	2.500	2.815
0.90	0.310	0.638	0.966	1.293	1.621	1.948	2.276	2.603	2.931
1.00	0.323	0.661	1.000	1.339	1.677	2.016	2.355	2.694	3.032
1.10	0.333	0.682	1.030	1.379	1.727	2.076	2.424	2.773	3.121
1.20	0.343	0.700	1.057	1.414	1.771	2.129	2.486	2.843	3.200
1.30	0.351	0.716	1.081	1.446	1.811	2.176	2.541	2.905	3.270
1.40	0.359	0.731	1.103	1.474	1.846	2.218	2.590	2.962	3.333
1.50	0,366	0.744	1.122	1.500	1.878	2.256	2.634	3.012	3.390
1.60	0.372	0.756	1.140	1.523	1.907	2.291	2.674	3.058	3.442
1.70	0.378	0.767	1.156	1.544	1.933	2.322	2.711	3.100	3.489
1.80	0.383	0.777	1.170	1.564	1.957	2.351	2.745	3.138	3.532
1.90	0.388	0.786	1.184	1.582	1.980	2.378	2.776	3.173	3.571
2.00	0.392	0.794	1.196	1.598	2.000	2.402	2.804	3.206	3.608
2.10	0.396	0.802	1.208	1.613	2.019	2.425	2.830	3.236	3.642
2.20	0.400	0.809	1.218	1.627	2.036	2.445	2.855	3.264	3.673
2.30 2.40			1.228					3.289	
2.40	0.407	0.822	1.237	1.653	2.068	2.483	2.898	3.314	3.729
2.50	0.410	0.828	1.246	1.664	2.082	2.500	2.918	3.336	3.754

TABLE 3-3. FINAL ACCIDENT PREDICTION FROM INITIAL PREDICTION AND ACCIDENT HISTORY [3 YEARS OF ACCIDENT DATA (T=3)]

TABLE 3-4. FINAL ACCIDENT PREDICTION FROM INITIAL PREDICTION AND ACCIDENT HISTORY [4 YEARS OF ACCIDENT DATA (T=4)]

$\begin{aligned} & \text { INITIAL } \\ & \text { PREDICTIOM } \\ & \text { FROM BASIC } \\ & \text { MODEL, }{ }^{\text {a }} \end{aligned}$	0	1	2	3	4	NUMBER 5	6	ENTS, 7	$\begin{array}{ll} \text { IN } & T \\ 8 & \end{array}$	YEARS 9	10	11	12	13	14
0.00	0.000	0.042	0.083	0.125	0.167	0.208	0.250	0.292	0.333	0.375	0.417	0.458	0.500	0.542	0.583
0.01	0.008	0.056	0.105	0.153	0.202	0.250	0.298	0.347	0.395	0.444	0.492	0.540	0.589	0.637	0.685
0.02	0.016	0.070	0.125	0.180	0.234	0.289	0.344	0.398	0.453	0.508	0.563	0.617	0.672	0.727	0.781
0.03	0.023	0.083	0.144	0.205	0.265	0.326	0.386	0.447	0.508	0.568	0.629	0.689	0.750	0.811	0.871
0.04	0.029	0.096	0.162	0.228	0.294	0.360	0.426	0.493	0.559	0.625	0.691	0.757	0.824	0.890	0.956
0.05	0.036	0.107	0.179	0.250	0.321	0.393	0.464	0.536	0.607	0.679	0.750	0.821	0.893	0.964	1.036
0.06	0.042	0.118	0.194	0.271	0.347	0.424	0.500	0.576	0.653	0.729	0.806	0.882	0.958	1.035	1.111
0.07	0.047	0.128	0.209	0.291	0.372	0.453	0.534	0.615	0.696	0.777	0.858	0.939	1.020	1.101	1.182
0.08	0.053	0.138	0.224	0.309	0.395	0.480	0.566	0.651	0.737	0.822	0.908	0.993	1.079	1.164	1.250
0.09	0.058	0.147	0.237	0.327	0.417	0.506	0.596	0.686	0.776	0.865	0.955	1.045	1.135	1.224	1.314
0.10	0.062	0.156	0.250	0.344	0.438	0.531	0.625	0.719	0.812	0.906	1.000	1.094	1.188	1.281	1.375
0.20	0.100	0.225	0.350	0.475	0.600	0.725	0.850	0.975	1.100	1.225	1.350	1.475	1.600	1.725	1.850
0.30	0.125	0.271	0.417	0.563	0.708	0.854	1.000	1.146	1.292	1.437	1.583	1.729	1.875	2.021	2.167
0.40	0.143	0.304	0.464	0.625	0.786	0.946	1.107	1.268	1.429	1.589	1.750	1.911	2.071	2.232	2.393
0.50	0.156	0.328	0.500	0.672	0.844	1.016	1.188	1.359	1.531	1.703	1.875	2.047	2.219	2.391	2.563
0.60	0.167	0.347	0.528	0.708	0.889	1.069	1.250	1.431	1.611	1.792	1.972	2.153	2.333	2.514	2.694
0.70	0.175	0.363	0.550	0.738	0.925	1.113	1.300	1.488	1.675	1.863	2.050	2.238	2.425	2.613	2.800
0.80	0.182	0.375	0.568	0.761	0.955	1.148	1.341	1.534	1.727	1.920	2.114	2.307	2.500	2.693	2.886
0.90	0.188	0.385	0.583	0.781	0.979	1.177	1.375	1.573	1.771	1.969	2.167	2.365	2.563	2.760	2.958
1.00	0.192	0.394	0.596	0.798	1.000	1.202	1.404	1.606	1.808	2.010	2.212	2.413	2.615	2.817	3.019
1.10	0.196	0.402	0.607	0.813	1.018	1.223	1.429	1.634	1.839	2.045	2.250	2.455	2.661	2.866	3.071
1.20	0.200	0.408	0.617	0.825	1.033	1.242	1.450	1.658	1.867	2.075	2.283	2.492	2.700	2.908	3.117
1.30	0.203	0.414	0.625	0.836	1.047	1.258	1.469	1.680	1.891	2.102	2.313	2.523	2.734	2.945	3.156
1.40	0.206	0.419	0.632	0.846	1.059	1.272	1.485	1.699	1.912	2.125	2.338	2.551	2,765	2.978	3.191
1.50	0.208	0.424	0.639	0.854	1.069	1.285	1.500	1.715	1.931	2.146	2.361	2.576	2.792	3.007	3.222
1.60	0.211	0.428	0.645	0.862	1.079	1.296	1.513	1.730	1.947	2.164	2.382	2.599	2.816	3.033	3.250
1.70	0.213	0.431	0.650	0.869	1.088	1.306	1.525	1.744	1.962	2.181	2.400	2.619	2.837	3.056	3.275
1.80	0.214	0.435	0.655	0.875	1.095	1.315	1.536	1.756	1.976	2.196	2.417	2.637	2.857	3.077	3.298
1.90	0.216	0.437	0.659	0.881	1.102	1.324	1.545	1.767	1.989	2.210	2.432	2.653	2.875	3.097	3.318
2.00	0.217	0.440	0.663	0.886	1.109	1.332	1.554	1.777	2.000	2.223	2.446	2.668	2.891	3.114	3.337
2.10	0.219	0.443	0.667	0.891	1.115	1.339	1.562	1.786	2.010	2.234	2.458	2.682	2.906	3.130	3.354
2.20	0.220	0.445	0.670	0.895	1.120	1.345	1.570	1.795	2.020	2.245	2.470	2.695	2.920	3.145	3.370
2.30	0.221	0.447	0.673	0.899	1.125	1.351	1.577	1.803	2.029	2.255	2.481	2.707	2.933	3.159	3.385
2.40	0.222	0.449	0.676	0.903	1.130	1.356	1.583	1.810	2.037	2.264	2.491	2.718	2.944	3.171	3.398
2.50	0.223	0.451	0.679	0.906	1.134	1.362	1.589	1.817	2.045	2.272	2.500	2.728	2.955	3.183	3.411

TABLE 3-5. FINAL ACCIDENT PRED.ICTION FROM INITIAL PREDICTION
AND ACCIDENT HISTORY [5 YEARS OF ACCIDENT DATA ($T=5$)]

2. If $a=N / T$, then the final prediction (A) will equal a and N / T.
3. If no accident.history is available, $T=0$, then the final prediction (A) will equal the initial prediction (a) from the basic formula.

3.2.2 Basic Formula

The initial prediction of a crossing's accidents (a) is determined from the basic accident prediction formula described in equation 3-2 below. The basic formula produces a prediction on the basis of a crossing's characteristics as described in The Inventory. The technique used for developing the basic formula involved applying nonlinear multiple regression techniques to crossing characteristics stored in The Inventory and to accident data contained in the FRA Railroad Accident/Incident Reporting System (RAIRS). The 1976 accident file and the August 1976 inventory were used to develop the formula. Half of the file was used to determine the formula coefficients, by regression and iteration (data set A), and the other half was used for testing of the formula (data set B). Data sets A and B were disjoint, of equal size and comprised of a random sample of records from The Inventory, including all records for which accident data existed in the RAIRS file. Each data set was categorized into two groups of accident and nonaccident crossings.

The resulting basic formula can be expressed as a series of factors which, when multiplied together, yield the initial predicted accidents per year (a) at a crossing. Each factor in the formula represents a characteristic of the crossing described in The Inventory. The general expression of the basic formula is shown below:
$a=K \times E I \times M T \times D T \times H P \times M S \times H T x H L$
where
$a=i n i t i a l$ accident prediction, accidents per year at the crossing

```
K = constant for initialization of factor values at 1.00*
EI = factor for exposure index based on product of highway
    and train traffic
MT = factor for number of main tracks
DT = factor for number of thru trains per day during
    daylight
HP = factor for highway paved (yes or no)
MS = factor for maximum timetable speed*
HT = factor for highway type*
HL = factor for number of highway lanes
    Three sets of equations are used to determine the value of each factor
for each of the following three categories of warning devices:
1. Passive, including the following warning device classes:
```

```
Class 1 - No signs or signals
```

Class 1 - No signs or signals
Class 2 - Other signs
Class 3 - Stop signs
Class 4 - Crossbucks
2. Flashing lights, including the following warning device classes:
Class 5 - Special e.g., flagman
Class 6 - Highway signals, wig-wags or bells
Class 7 - Flashing lights

```

\footnotetext{
*New formula factors not included in the previous version of the basic formula described in References 3 and 4.
}
3. Gates, including the following warning device class:
```

Class 8 - Automatic gates with flashing lights

```

The crossing characteristic factor equations for the three warning device categories are shown in Table 3-6. Each set of factor equations should be used only for crossings with the warning device classes for which it was designed. For example, if it is desired to predict the number of accidents at a crossing with crossbucks, then the passive set of equations should be used.

The numerical value of eack factor is related to the degree of correlation that a specific crossing characteristic was found to have with crossing accident rates. For those cases in Table \(j-6\) where the value of the factor is indicated as a constant 1.0 , it was found that the characteristic did not have a significant relationship to crossing accidents.

The structure of the basic accident prediction formula makes it possible to construct look-up tatles of numerical values for the crossinf characteristic factors. To predict the accidents at a particular crossing whose Inventory characteristics are know, the values of the factors are found in the table and multiplied together. The factor values for the three warning Lievice categories (passive, flashing lights and gates) ere found in Tables j-\%, j- 8 and 3-5, respectively. Detailed procedures for use of the tables and computer automation ol the accident prediction formula are presented in Section 5. 1.

An inspection of the fector value tables shows that exposure index (EI), Laseci on the product of annual average daily highway traffic (c) and average daily train traffic ( \(t\) ), has the strongest relationship to predicted accidents. All other factors can ve seen as having a secondary relationship to predicted accidents. It is useful in understanding the \(n=t u r e\) of the basic accident prediction formula to plot the relationship of accidents to the prinary crossing characteristics of highway and tr in traffic, while holding

GENERAL FORM OF BASIC ACCIDENT PREDICTION FORMULA: \(a=K \times E I \times M T \times D T \times H P \times M S \times H T \times H L\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{CROSSING CHARACTERISTIC FACTORS} \\
\hline Crossing category & Formula CONSTANT K & ```
EXPOSURE
INDEX
FACTOR
    EI
``` & \begin{tabular}{l}
MA IN \\
TRACKS \\
FACTOR MT
\end{tabular} & DAY THRU TRAINS FACTOR DT & \begin{tabular}{l}
HIGHWAY \\
PAVED \\
FACTOR HP
\end{tabular} & \[
\begin{aligned}
& \text { MAXIMUM } \\
& \text { SPEED } \\
& \text { FACTOR } \\
& \text { MS }
\end{aligned}
\] & \begin{tabular}{l}
IIIGHWAY \\
TYPE \\
FACTOR \\
HT
\end{tabular} & \[
\begin{aligned}
& \text { HIGHWAY } \\
& \text { LANES } \\
& \text { FACTOR } \\
& \text { HL }
\end{aligned}
\] \\
\hline PASSIVE & 0.002268 & \(((\mathrm{cxt}+0.2) / 0.2)^{0.3334}\) & \(e^{0.2094 m t}\) & \(((d+0.2) / 0.2)^{0.1336}\) & \(\mathrm{e}^{-0.6160\left(h_{p-1}-1\right)}\) & \(e^{0.0077 m s}\) & \(e^{-0.1000(h t-1)}\) & 1.0 \\
\hline FLASHING LIGHTS & 0.003646 & \(((\mathrm{c} \times \mathrm{t}+0.2) / 0.2)^{0.2953}\) & \(e^{0.1088 m t}\) & \(((d+0.2) / 0.2)^{0.0470}\) & 1.0 & 1.0 & 1.0 & \(e^{0.1380(h l-1)}\) \\
\hline GATES & 0.001088 & \(((\mathrm{cxt}+0.2) / 0.2)^{0.3116}\) & \(e^{0.2912 m t}\) & 1.0 & 1.0 & 1.0 & 1.0 & \(e^{0.1036(h 1-1)}\) \\
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
c - annual average number of highway vehicles per day (total both directions) \\
L = average total train movements per day \\
\(m t=\) number of main tracks \\
d - average number of thril itians per day during day 1 ight \\
\(h_{1} \mathrm{p}=\) highway paved, yes \(=1.0\), no \(=2.0\) \\
\(m s=\) maximum timetable speed, mph \\
ht \(=\) highway type factor value \\
h1 \(=\) number of highway lanes
\end{tabular}} & \begin{tabular}{l}
hIGHWAY TYPE \\
RURAL \\
Interstate \\
Other principal ar \\
Minor arterial \\
Major callector \\
Minor collector \\
Local
\[
\begin{aligned}
& \text { URBAN } \\
& \text { Interstate } \\
& \text { Other freeway and } \\
& \text { Other principal ar } \\
& \text { Minor arterial } \\
& \text { Collector } \\
& \text { Lacal }
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
erial \\
xpressway erial
\end{tabular} & INVENTORY CODE
\[
\begin{aligned}
& 01 \\
& 02 \\
& 06 \\
& 07 \\
& 08 \\
& 09
\end{aligned}
\] & \begin{tabular}{l}
hi. \\
VALUE
\[
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6
\end{aligned}
\] \\
1
2
3
4
5
6
\end{tabular} & \\
\hline
\end{tabular}

UENERAL FORM OF BASIC ACCIDENT PREDICTION FORMULA: \(a=K \times E I \times M T \times D T \times H P \times M S \times H T \times H L\)

* Less than one train per day.

TABLE 3-8. FACTOR VALUES FOR CROSSINGS WITH FLASHING LIGHT WARNING DEVICES

GENERAL FORM OF BASIC ACCIDENT PREDICTION FORMULA: \(a=K \times E I \times M T \times D T \times H P \times H S \times H T \times H L\)

Fess than one train per diy.
* For definition of highway type codes, see Table 3-6.

TABLE 3-9. FACTOR VALUES FOR CROSSINGS WITH GATE WARNING DEVICES
general form of basic accident prediction formula: a \(=K \times E I \times M T \times D T \times H P \times M S \times H T \times H L\)

** For definition of highway type codes, see Table 3-6.
the secondary factors constant at nominal values. When this is done, predicted accidents (a), can be viewed as a surface defined over the \(c\), \(t\) plane. The plots are shown in Figures 3-2, 3-3 and 3-4 for the three warning device categories. The predicted accident surface is portrayed by a set of equal-accident-level lines, which are analagous to contour lines on a topographical map. The larger the accident value, the higher above the \(c, t\) plane is the accident surface.

The plots show that the relationship of accidents to highway and train traffic is strongest at low values of traffic. An increase in highway and/or train traffic from low levels, say from 1000 to 2000 cars per day or 5 to 10 trains per day, increases the accident level to a greater extent than a similar change at high traffic volumes. This nonlinear relationship is important when considering the relative impacts on accident levels of future changes in traffic patterns between crossings that currently have different traffic volumes.

For different values of the secondary factors, the surfaces would have the same essential character. This is based on the observation from sensitivity results that any change in the secondary factors, other than d (number of thru trains per day during daylight), will cause the surface to be changed only by a constant. For different values of d, the multiplier of the surface is a function of \(d\), and hence the effect is more complex, but it is expected that the character of the surface would not change significantly.

*Numbers on Iines denote predicted accidents per year.

FIGURE 3-3. LINES OF EQUAL ACCIDENT PREDICTION LEVEL FOR WARNING DEVICE CLASSES 5, 6, 7.

*Numbers on lines denote predicted accidents per year.

FIGURE 3-4. LINES OF EQUAL. ACCIDENT PREDICTION LEVEL FOR WARNING DEVICE CLASS 8.

\section*{4. RESOURCE ALLOCATION MODEL}

\subsection*{4.1 INTRODUCTION}

The resource allocation model is designed to provide an initial recommended list of crossing improvements, that result in the greatest accident reduction benefits on the basis of cost-effectiveness considerations for a given budget limit (Ref. 4). This initial recommendation may then be used by states to guide the on-site inspection of crossings by diagnostic teams. Updated results obtained by the diagnostic teams then form a useful set of recommendations upon which state and local officials can finalize their crossing safety improvement plans. Input to the resource allocation model includes predicted accidents for the crossings being considered, costs and effectiveness of the different safety improvement options (e.g., flashing lights and gates), and the budget level available for safety improvement. Accident predictions for crossings can come from any accident prediction formula which computes number of accidents per year. The DOT accident prediction formula described in the previous section was developed for this purpose.

Cost data for the warning device options can be of several different types. They may be life cycle costs (the sum of procurement, installation, and maintenance), the costs associated with a particular phase of a project (e.g., procurement or installation or maintenance) or some fraction of these costs. In any case, comparable figures are needed for the following categories of improvement actions currently considered by the model: flashing lights for a previously passive crossing, gates for a previously passive crossing, and gates at a crossing previously equipped with flashing lights. Cost data on warning device improvements which can be used for the resource allocation model are presented in Section 4.2.3.

Warning device effectiveness required by the resource allocation model is defined as the decimal fraction by which accidents are expected to be reduced by installation of a warning device. Effectiveness is a relative measure
involving both existing and proposed warning systems at a crossing to be upgraded. If automatic gates have an effectiveness of 0.84 , when installed at a crossing with a passive warning device, the accident rate at the crossing will be reduced by 84 percent. Automatic gates installed at a crossing with flashing lights would have a lower effectiveness. An improvement which completely eliminates accidents, such as grade separations or closures, would have an effectiveness of 1.0 ; it is 100 percent effective. Values of effectiveness for different warning device improvement combinations are presented in Section 4.2.4.

The budget level for crossing improvements, used as input to the resource allocation model, should include the total multi-year funding available, even though it may exceed a single year's budget. The reason for this is that the resource allocation model will produce a different and possibly conflicting set of decisions depending upon the budget level used. If, for example, the first-year budget of a 2-year program is used, a specific set of decisions will result from the model. Use of the model again for the next year's budget, incorporating the crossing improvements made the previous year, will result in a new set of decisions. Some of the new decisions may involve further improvements to crossings just upgraded the previous year, resulting in an inefficient program. The best approach would have been to use the total 2-year budget for the first application of the model, and then fund the improvement decisions over a 2-year period.

The resource allocation model is intended to assist state and local planners in formulating decisions on crossing improvements. There are a number of applications where the model can be useful in this role. In its primary application, the model could use the state listing of crossings, ranked by predicted accidents, to produce a list of suggested improvement projects. The project list indicates which crossings are to be upgraded and the type of upgrade to be performed. The state can then use this suggested program as a basis to select crossings for on-site inspections by diagnostic teams. The diagnostic teams can validate original data used by the model, revise the suggested program if data has changed and obtain additional information on potential crossing hazards for consideration prior to finalizing program plans. A procedure for accomplishing this evaluation process is described in Section 4.2.5.

The resource allocation model can also be used to assess the sensitivity of improvement decisions to variations in the input parameters of warning device cost and effectiveness and predicted crossing accidents. If, for a given crossing or set of crossings, these parameters are known to be different than originally assumed, the new values can be substituted into the model and new results obtained. The effect of the new parameters can be assessed by a comparison of new improvement decisions with those resulting from the previous assumptions. This type of application is useful in evaluating the impacts of known or proposed changes in crossing characteristics, such as increases in train or highway traffic on certain routes, or closures of specific crossings.

The resource allocation model is also useful for evaluating the impacts of alternative program strategies. The model can be easily modified to incorporate constraints imposed on certain improvement actions by state warrants or guidelines. An example of such a constraint would be a gates-only policy at crossings with train speeds exceeding certain values. Variations in program budgeting such as inclusion versus exclusion of warning device maintenance costs and single-year versus multi-year funding limits, can al so be evaluated with the resource allocation model.

\subsection*{4.2 DESCRIPTION OF RESOURCE ALLOCATION MODEL}

\subsection*{4.2.1 Model Algorithm}

Three categories of crossings, representing all warning device classes in the inventory, are considered by the resource allocation algorithm, and are the same categories evaluated by the accident prediction formulas. Warning device classes 1 through 4 are grouped together and called "passive" warning systems, meaning that they are not train-activated devices. Classes 5, 6, and 7 are grouped together and called "flashing lights," since public crossings which are equipped with flashing lights predominate in this category. Class 8 remains as a separate warning device category called "gates".

Table 4-1 is a matrix showing the effectiveness and cost symbols for the three warning device groupings used in describing the resource allocation algorithm. The matrix reflects the possible combinations of crossing warning
device improvements currently considered by the model. For passive crossings, single track, two upgrade options exist, flashing lights or gates. For passive, multiple-track crossings, the model allows only the gate option to be considered in accordance with Federal regulations.* For flashing light crossings, the only improvement option is gates. The model can be modified by extending the basic logic to include other options, such as grade separations and closures. It is also necessary to determine the costs and effectiveness of any additional options that are considered.

TABLE 4-1. EFFECTIVENESS/COST SYMBOL MATRIX
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{EXISTING WARNING DEVICE} & \multicolumn{4}{|l|}{} \\
\hline & \begin{tabular}{l}
EQUI PMENT \\
EFFECTIVENESS
\end{tabular} & \[
\begin{aligned}
& \text { EQUI PMENT } \\
& \text { COST }
\end{aligned}
\] & \begin{tabular}{l}
EQUI PMENT \\
EFFECTIVENESS
\end{tabular} & \[
\begin{aligned}
& \text { EQUIPMENT } \\
& \text { COST }
\end{aligned}
\] \\
\hline Passive & \(\mathrm{E}_{1}\) & \(\mathrm{C}_{1}\) & \(\mathrm{E}_{2}\) & \(\mathrm{C}_{2}\) \\
\hline Flashing Lights & - & - & \(E_{3}\) & \(c_{3}\) \\
\hline
\end{tabular}

For any given crossing and/or proposed warning device, a pair of parameters \(\left(E_{j}, C_{j}\right)\), as shown in Table \(4-1\), must be provided for the resource allocation algorithm, where \(j=1\) for flashing lights installed at a passive crossing, \(j=2\) for gates installed at a passive crossing, and \(j=3\) for gates installed at a crossing with flashing lights. The first parameter (\(E_{j}\)) is the effectiveness of installing a proposed warning device at a crossing with a lower class warning device. The second parameter (\(C_{j}\)) is the corresponding cost of the proposed warning device. Table 4-1 shows the six warning device parameters \(\left(E_{1}, C_{1}, E_{2}, C_{2}, E_{3}, C_{3}\right)\) that are needed to use the resource allocation algorithm.

\footnotetext{
* 23 CFR \(646.214(\mathrm{~b})(3)(\mathrm{i})\)
}

The resource allocation model considers all crossings with either passive or flashing light warning devices for improvements. If, for example, a singletrack passive crossing, i, is considered, it could be upgraded with either flashing lights, with an effectiveness \(E_{1}\), or gates, with an effectiveness of \(E_{2}\). The number of predicted accidents at crossing i is \(A_{i}\); hence, the reduced accidents per year is \(A_{i} E_{1}\) for the flashing light option and \(A_{i} E_{2}\) for the gate option. The corresponding costs for these two improvements are \(C_{1}\) and \(C_{2}\). The accident reduction/cost ratios for these improvements are \(A_{i} E_{1} / C_{1}\) for flashing lights and \(A_{i} E_{2} / C_{2}\) for gates. The rate of increase in accident reduction versus costs that results from changing an initial decision to install flashing lights with a decision to install gates, at crossing i, is referred to as the incremental accident reduction/cost ratio and is equal to \(A_{i}\left(E_{2}-E_{1}\right) /\left(C_{2}-C_{1}\right)\). The incremental accident reduction/cost ratio is used by the algorithm to compare the cost-effectiveness of a decision to further upgrade a passive crossing from flashing lights to gates with an alternative decision to upgrade another crossing instead. If a passive multiple-track crossing, i, is considered, the only improvement option allowable would be installation of gates, with an effectiveness of \(E_{2}\), a cost of \(C_{2}\) and an accident reduction/cost ratio of \(A_{i} E_{2} / C_{2}\). If crossing \(i\) was originally a flashing light crossing, the only improvement option available would be installation of gates, with an effectiveness of \(E_{3}\), a cost of \(C_{3}\) and an accident reduction/cost ratio of \(A_{i} E_{3} / C_{3}\).

The resource allocation algorithm systematically computes the accident reduction/cost ratios, including incrementals, of all allowable improvement options for all crossings under consideration. The individual accident reduction/cost ratios which are associated with these improvements are selected by the algorithm in an efficient manner to produce the maximum accident reduction which can be obtained for a predetermined total cost. This total cost is the sum of an integral number of equipment costs \(\left(C_{1}, C_{2}\right.\) and \(C_{3}\)). The total, maximum accident reduction is the sum of the individual accident reductions of the form \(A_{i} E_{j}\).

A flow diagram describing the logic of the resource allocation algorithm is shown in Figure 4-1. The input to this program consists of the set of crossings for which the model is to apply, the accidents predicted per year
for these crossings, the six warning device parameters \(\left(E_{1}, E_{2}, E_{3}, C_{1}, C_{2}\right.\), \(C_{3}\)), and the funding level (CMAX) which determines where the calculation is to stop.

The algorithm, described in Figure \(4-1\), proceeds according to the following steps in computing optimal resource allocations.

Step 1: The reasonable assumption is made for the algorithm that \(E_{2}>E_{1}\) and \(C_{2}>C_{1}\). This assumes that gates are more effective at passive crossings than flashing lights and that gates cost more. However, the effectiveness/ cost ratio for flashing lights \(\left(E_{\uparrow} / C_{1}\right)\) could be greater or less than that for gates \(\left(E_{2} / C_{2}\right)\). If \(E_{1} / C_{1}>E_{2} / C_{2}\), the algorithm computes incremental accident reduction/cost ratios for all allowable improvements at each crossing according to the procedure outlined in step 2 A below. Step 2 A is based on the assumption that flashing lights have a greater effectiveness/cost ratio than gates. If the opposite is true -- that gates have an effectiveness/cost ratio equal to or greater than flashing lights \(\left(E_{1} / C_{1} \leq E_{2} / C_{2}\right)\)-- then step \(2 B\) is followed for computing the improvement accident reduction/cost ratios. Step \(2 B\) assumes that gates will always be installed at passive crossings.

Step 2A: In step 2A, two accident reduction/cost ratios are calculated for each single-track passive crossing, \(A_{i} E_{1} / C_{1}\) and the incremental ratio \(A_{i}\) \(\left(E_{2}-E_{1}\right) /\left(C_{2}-C_{1}\right)\), where \(A_{i}\) is the number of accidents predicted per year for the crossing. These two ratios correspond to the two actions available for single-track passive crossings, either to install flashing lights or a revised decision to install gates. For multiple-track passive crossings, only the accident reduction/cost ratio for installation of gates is calculated (\(A_{i} E_{2} / C_{2}\)), to conform with Federal regulations. For each crossing equipped with flashing lights; the algorithm computes \(A_{i} E_{3} / C_{3}\), corresponding to an upgrading from flashing lights to gates. The accident reduction/cost ratio is represented in units of accidents prevented per year per dollar.

Step 2B: The algorithm computes the accident reduction/cost ratio \(A_{i} E_{2} / C_{2}\) for passive crossings and the ratio \(A_{i} E_{3} / C_{3}\) for crossings with flashing lights. These accident reduction/cost ratios are associated with installing only gates at crossings. For the step \(2 B\) case, these actions are always

optimal to the alternative of installing flashing lights, since the accident reduction/cost ratio and the absolute cost of gates are greater than for flashing lights.

Step 3: Regardless of whether step \(2 A\) or \(2 B\) is followed, all of the accident reduction/cost ratios calculated by the algorithm are ranked with the largest first. The list of accident reduction/cost ratios represents a sequence of optimal decisions starting with the top of the list.

Step 4: This step consists of a series of iterations, where the algorithm progresses down the list of ranked accident reduction/cost ratios. This process is equivalent to making the optimum decision of achieving the maximum accident reduction for each additional increment in cost incurred. If the accident reduction/cost ratio at any given step on the list is calculated as \(A_{i} E_{1} / C_{q}\), a decision is made to install flashing lights at a passive crossing, with an accident reduction of \(A_{i} E_{1}\) and cost of \(C_{1}\). If the accident reduction/cost ratio is \(A_{i}\left(E_{2}-E_{1}\right) /\left(C_{2}-C_{1}\right)\), a previous decision to install flashing lights is changed to installation of gates at a passive crossing. The incremental accident reduction of changing the previous decision is \(A_{i}\left(E_{2}-E_{1}\right)\), and the incremental cost is \(C_{2}-C_{1}\). If the accident reduction/cost ratio is \(A_{i} E_{2} / C_{2}\), then a decision is made to install gates at a passive crossing without prior consideration of flashing lights. The accident reduction is \(A_{i} E_{2}\) at a cost of \(C_{2}\). If the accident reduction/cost ratio is \(A_{i} E_{3} / C_{3}\), then a decision is made to install gates at a crossing which had flashing lights. The accident reduction is \(A_{i} E_{3}\) at a cost of \(C_{3}\). The total accident reduction at each step is the sum of the previous accident reductions, and the total cost is the sum of the previous costs.

In addition to determining the total accident reduction and cost at each step, the algorithm also determines the particular warning systems which are to be installed at particular crossings. Since the crossings which were affected are known, the accident prediction, accidents, location, and all other information in The Inventory for those crossings, are also known. Thus, the output of the program could include any of this information and any computations based on this information. Several types of output are shown in Section 5.2.

Step 5: The cumulative total cost at each "stèp, proceeding. down the list of accident reduction/cost ratios, is compared with the total funding limit specified as input to the algorithm. When the total cost equals or exceeds this limit, the program ends. Otherwise, the sequential procedure described in step 4 continues.
4.2.2 Demonstration of Algorithm

To demonstrate operation of the algorithm, an example which considers the three crossings described in Table 4-2 follows. The predicted accidents per year and current warning device information for the crossings together with assumed warning device cost and effectiveness parameters, presented in Table \(4-3\), constitute the input data for the algorithm.

TABLE 4-2. SAMPLE CROSSINGS FOR ALGORITHM DEMONSTRATION
\begin{tabular}{|c|c|c|}
\hline CROSSING & CURRENT WARNING DEVICE & PREDICTED ACCIDENTS PER YEAR \(\mathrm{A}_{\mathrm{i}}\) \\
\hline \(\mathrm{X}_{1}\) (single track) & Passive & \(A_{1}=0.3\) \\
\hline \(\mathrm{X}_{2}\) & Flashing Lights & \(A_{2}=0.2\) \\
\hline \(\mathrm{X}_{3}\) & Flashing Lights & \(A_{3}=0.1\) \\
\hline
\end{tabular}
\begin{tabular}{lclll}
\hline & FLASHING LIGHTS & AUTOMATIC GATES
\end{tabular}

The algorithm proceeds through the following steps which were described in the previous section and in Figure 4-1.

Step 1: The effectiveness/cost ratio for flashing lights (\(E_{1} / C_{1}\)) is greater than that for gates \(\left(E_{2} / C_{2}\right)\) hence the algorithm follows step 2A. (See Figure 4-1.) This implies that the most effective first action which can be taken at a passive crossing is the installation of flashing lights.

Step 2A: The crossings are selected for analysis by the algorithm in the order they appear in Table \(4-2\). For each crossing selected, the appropriate accident reduction/cost ratios are calculated, corresponding to all the allowable warning device improvements which may be made. The results of these calculations are shown in Table 4-4.

Step 3: The accident reduction/cost ratios as calculated in step 2 A are ranked in descending order, beginning with the largest. The warning device improvement action at each crossing, represented by the ratios and corresponding cumulative accident reduction and cost, are tabulated in Table 4-5.

TABLE 4-5. STEP 3: RANKING OF ACCIDENT REDUCTION/COST RATIOS

Step 4: From the ranked list in Table 4-5, the first action selected by the algorithm corresponds to the first ranked accident reduction/cost ratio: installation of flashing lights at crossing \(X_{1}\) with a cost of \(\$ 25,000\). The next action selected by the algorithm corresponds to the next ranked accident reduction/cost ratio: installation of gates at crossing \(X_{2}\). resulting in a cumulative cost of \(\$ 60,000\) for the first two projects. The algorithm proceeds in this manner until the cumulative total cost of all improvement actions equals the available funding (CMAX). It should be noted that the third action selected by the algorithm does not involve an additional crossing, but revises an earlier decision to install gates rather than flashing lights at crossing \(X_{1}\). This type of revision is typical of the algorithm for normal applications, as additional funding is made available. For the above example, if a total of \(\$ 115,000\) were available for improvements (CMAX \(=\$ 115,000\)), the algorithm would proceed through the fourth item on the list involving crossing \(X_{3}\). The overall improvement actions for \(\$ 115,000\) would result in the installation of gates at all three crossings.

\subsection*{4.2.3 Warning Device Cost Data}

As described above, the resource allocation model requires data on the costs of the warning device improvement options. A study has been performed to determine average national values for these costs. (Ref. 5) The costs determined include the initial installation costs and the net present value (NPV) maintenance costs over the life of the equipment which are added together to yield the total life cycle cost. These costs in 1977 dollars are shown in Table 4-6 below.

TABLE 4-6. WARNING DEVICE IMPROVEMENT COSTS, 1977
\begin{tabular}{lccc}
\hline \begin{tabular}{l}
IMPROVEMENT \\
OPTION
\end{tabular} & \begin{tabular}{c}
INSTALLATION \\
COST
\end{tabular} & \begin{tabular}{c}
NPV \\
MAINTENANCE \\
COST
\end{tabular} & \begin{tabular}{c}
NPF CYCLE \\
COST
\end{tabular} \\
\hline Passive to Flashing Lights, \(C_{1}\) & \(\$ 27,400\) & \(\$ 15,400\) & \(\$ 42,800\) \\
Passive to Gates, \(C_{2}\) & \(\$ 40,800\) & \(\$ 24,300\) & \(\$ 65,100\) \\
Flashing Lights to Gates, \(C_{3}\) & \(\$ 36,700\) & \(\$ 24,500\) & \(\$ 61,200\)
\end{tabular}

The category of costs that are used as input to the resource allocation model (installation, maintenance, life cycle or some combination of these) can be determined at the discretion of the user. Installation costs reflect the immediate costs to the state and Federal Government of completing the project. Maintenance costs are the long term recurring costs of the project, usually to the railroads; however, some states share in these costs. Total life cycle costs reflect the project's total cost over its useful life.

Since the costs shown in Table \(4-6\) have been inflating rapidly, a procedure has been developed to produce multipliers for the installation and maintenance costs that will increase their amounts to current dollars. The procedure uses the annual index of charge-out prices and wage rates from the AAR. (Ref.6)

The inflation multiplier for installation costs (MI) is determined from the average increase in the "Other Material" index, (OM) and the "Wage Rate" index (WR) from their 1977 values of 217 and 227, respectively:

where
```

MI = inflation multiplier for installation costs
OM = other material index for the current year
WR = wage rate index for the current year

```

The 1980 annual values for the indexes (published January 30 , 1981) were \(O M=291.4\) and \(W R=301.6\); hence, MI for 1980 is:
\(M_{1980}=\frac{(291.4 / 217+301.6 / 227)}{2}\)
\(=1.34\)

The inflation multiplier for maintenance costs (MM) is a weighted average of 95 percent of the installation cost multiplier (MI) and 5 percent of the increase in the "Fuel" index (F) from its 1977 value of 390:
```

MM = MI x 0.95 +(F/390) x 0.05

```
where
\(M M=\) inflation multiplier for maintenance costs \(F=\) fuel index for the current year

The 1980 annual value for the fuel index (F) is 908.8 ; hence, MM for 1980 is:
\(M_{1980}=1.34 \times 0.95+(908.8 / 390) \times 0.05\)
\(=1.39\)
Applying the 1980 multiplier values to the 1977 costs shown in Table \(4-6\) yields the 1980 warning device improvement costs shown in Table 4-7 below. At any future time, the 1977 costs can be increased to reflect current values using the procedure described above.

TABLE 4-7. WARNING DEVICE IMPROVEMENT COSTS, 1980

The cost values shown in Table \(4-7\) are national averages, and their use will produce a reasonable set of decisions by the resource allocation model, which will be useful in formulating improvement programs. The study to determine the cose did not reveal any significant shifts in costs by region of the country, although some variation by railroad was observed. If other figures for the average costs of improvements are available, and are thought to more accurately reflect the application in question, these figures may be substituted for those suggested here.

Use of average costs introduces the simplification of not accounting for the actual variation in costs that can occur from one project to another. Average values assume, for example, that all passive crossings upgraded to gates will cost the same. If the user can determine more accurately the actual variation in costs for improvement options on all crossings being considered, these costs could be used. To do so, however, will require modification of the model program to permit cost data to be input on an individual crossing basis. The model program currently accepts only the three cost values \(\left(C_{1}, C_{2}, C_{3}\right.\),) as input.

Caution should be exercised in adjusting the costs of a few selected projects while assigning average costs to all other projects. If this is done, decisions regarding the adjusted crossings may be unreasonably biased by the algorithm. The effect on individual crossing decisions of changes in a crossing's cost characteristics from the average values can be determined
manually, using a procedure described in Section 4.2.5. With this procedure, all other decisions by the algorithm will remain constant, while it can be determined if the decision regarding the crossing in question will change with the new cost values.

\subsection*{4.2.4 Warning Device Effectiveness Data}

TWo investigations have been performed to determine the effectiveness of warning devices in reducing accidents at rail-highway crossings. The most recent study used information in The Inventory and the FRA accident reporting system. (Ref. 7) This study compared the accident rates at crossings both before and after warning device improvements had been made to determine their effectiveness during the period from 1975 to 1978. An earlier study was performed in 1974 by the California Public Utilities Commission (Ref.8). This study examined accident rates before and after upgrades at 1552 California crossings over the period from 1960 to 1970. The results of these studies are shown in Table \(4-8\) in terms of the effectiveness values \(E_{1}, E_{2}\) and \(E_{3}\) for the three improvement options considered by the resource allocation model.

TABLE 4-8. EFFECTIVENESS OF WARNING DEVICE IMPROVEMENTS
\begin{tabular}{lcc}
\begin{tabular}{l}
WARNING DEVICE \\
IMPROVEMENT \\
OPTION
\end{tabular} & \begin{tabular}{c}
DOT \\
STUDY, 1980
\end{tabular} & \begin{tabular}{l}
CALIFORNIA \\
STUDY, 1974
\end{tabular} \\
\hline Passive to Flashing Lights, \(E_{1}\) & 0.65 & 0.64 \\
Passive to Gates, \(\mathrm{E}_{2}\) & 0.84 & 0.88 \\
Flashing Lights to Gates, \(\mathrm{E}_{3}\) & 0.64 & 0.66
\end{tabular}

The effectiveness values resulting from the two studies are quite similar. In fact, the average values from the California study all fall within the 95percent confidence interval of the DOT study results. The question arises as to which set of values to use for the resource allocation model. As with the cost data, any set of values which the user feels accurately reflect the situation being evaluated may be used. Without other information to the contrary, the effectiveness values from the DOT study are recommended, since
they were most recently developed, and used the largest data base of national scope. The DOT results are currently (summer, 1981) being recalculated, using additional data added to The Inventory and accident files since the previous study was completed. It is expected that the effectiveness values shown in Table 4-8 may change slightly as a result of this work. These values should therefore not be thought of as constants.

\subsection*{4.2.5 Field Verification and Revision of Resource Allocation Results}

Crossings selected for improvements by the resource allocation model should be inspected by a diagnostic team to determine the accuracy of input data and the reasonableness of the recommended improvement. The inspection may show that data from The Inventory are not correct, resulting in an inaccurate predicted accident rate. Also, the assumed warning device effectiveness and cost may be found inappropriate for the particular crossing. In addition, the diagnostic team should make note of hazardous conditions at crossings, such as limited sight distance or hazardous materials traffic, that are not included in the resource allocation model but shouid be considered before making a final decision. A manual procedure has been developed to evaluate the impact of changes in crossing data on the improvement decision made by the resource allocation model. This procedure can be performed without rerunning the model and is incorporated in a worksheet, shown in Figure 4-2. The worksheet, guides the diagnostic team through the on-site evaluation procedure using a five-step set of instructions.

Steps 1, and 2 of the worksheet involve validating crossing characteristics data, and recalculating the predicted accidents if any of the data is revised. Step 3 validates the cost and effectiveness assumptions for the recommended warning device. As a result of completing steps 1,2 and 3 , three basic inputs to the resource allocation model may have changed: (1) number of predicted accidents (A); (2) warning device effectiveness (E); and (3) warning device cost (C). Step 4 of the worksheet describes the procedure for determining if any input changes will affect the improvement decision. If any of these inputs changed, the parameter (R) is then calculated, using the formula below and described in part 2 of step 4:

\section*{RAIL-HIGHWAY CROSSING RESOURCE ALLOCATION PROCEDURE}

VERIFICATION WORKSHEET

This worksheet provides a format and instructions for use in field evaluation of crossings to determine if initial recommendations for warning device installations from the Resource Allocation Procedure should be revised. Steps 1 through 5, described below, should be followed in making the determination. In Steps 1 and 3, the initial information (left column) is obtained from office inventory data prior to the field inspection. In Step 4, the decision criteria values are obtained from the Resource Allocation Model printout.

STEP 1: VALIDATE DATA USED IN CALCULATING PREDICTED ACCIDENTS.

STEP 2: CALCULATE REVISED ACCIDENT PREDICTION FROM DOT FORMULA IF ANY DATA IN STEP 1 HAS BEEN REVISED.

Revised Predicted Accidents (A) = \(\qquad\)
STEP 3: VALIDATE COST AND EFFECTIVENESS DATA FOR RECOMMENDED WARNING DEVICE.
\begin{tabular}{ll}
Assumed Effectiveness of Recommended Warning Device (E) & \begin{tabular}{l}
INITIAL \\
INFORMATION \\
INFORMATION
\end{tabular} \\
Recommend Cost Of Recommended Warning Device (C) & \\
\hline
\end{tabular}

STEP 4: DETERMINE IF RECOMMENDED WARNING DEVICE IS REVISED IF A, E OR C HAS CHANGED.

Instructions For Determining If Reconmended Warning Device Should Be Revised
1. Obtain Decision Criteria Values From Resource Allocation Model Output:
\[
D C_{1}=\ldots \quad D C_{2}=\ldots \quad D C_{3}=\ldots \quad D C_{4}=
\]
2. Calculate: \(R=\frac{\text { Revised } A}{\text { Previous } A} \times \frac{\text { Revised } E}{\text { Previous E }} \times \frac{\text { Previous } C}{\text { Revised } C}\)
3. Compare R With Appropriate Decision Criteria As Shown Below:

3a. Existing Passive Crossing
(Classes 1, 2, 3, 4) Single Track

3b. Existing Passive Crossing (Classes 1, 2, 3, 4) Multiple Tracks

3c. Existing Flashing Light Crossing
(Classes 5, 6, 7)
Comparison Decision Comparison Decision
\(\mathrm{DC}_{3} \leq \mathrm{R} \quad\) Gates \(\quad \mathrm{DC}_{4} \leq \mathrm{R} \quad\) Gates
\(D C_{1} \leq R<D C_{2} \quad\) Flashing Lights \(\quad R<D C_{3}\) No Installation \(\quad R<D C_{4} \quad\) No Installation \(\mathrm{R}<\mathrm{DC}_{1} \quad\) No Installation
4. Revised Recomended Warning Device Installation: \(\qquad\)

STEP 5: DETERMINE OTHER CROSSING CHARACTERISTICS THAT MAY INFLUENCE WARNING DEVICE
INSTALIATION DECISIONS.
```

Multiple tracks where one train/locomotive may obscure vision of another train?

```
\(\qquad\)
```

Percent trucks
Passenger train operations over crossing?
High speed trains with limited sight distance?**
Combination of high speeds and moderately high volumes of highway
and railroad traffic?**
Either, or any combination of, high vehicular traffic volumes, high
numbers of train movements, substantial numbers of achool buses or
trucks carrying hazardous materials, unusually restricted sight distance
or continuing accident occurrences?**

```

\footnotetext{
* The cost and effectiveness values for the revised warning device are assumed to change by an amount proportional to the change in these values for the initial recomended warning device as determined in Step 3.
** Gates with flashing lights are the only recommended warning device per 23CFR 646.214(b)(3)(i).
}
\(R=\frac{\text { Revised } A}{\text { Previous } A} \times \frac{\text { Revised } E}{\text { Previous E }} \times \frac{\text { Previous C }}{\text { Revised } C}\)

The value of \(R\) is the ratio of the revised to previous accident reduction/cost ratio, for the original recommended improvement action. The \(R\) value is then compared with the appropriate decision criteria values (DC, \(D C_{2}, D C_{3}\), and \(D C_{4}\)) as described within part 3 of step 4 on the worksheet. The decision criteria values are obtained from the standard output report (Figure 5-14) of the resource allocation model. The result of this comparison will determine if the original recommended improvement should be revised.

The decision criteria values are computed by the standard program of the resource allocation model for each crossing considered (see Section 5.2 for description of programs). The formula for computing the four decision criteria are shown below:
\(D C_{1}=A C_{m} /\left[A_{i}\left(E_{1} / C_{1}\right)\right]\)
\(D C_{2}=A C_{m} /\left[A_{i}\left(E_{2}-E_{1}\right) /\left(C_{2}-C_{1}\right)\right]\)
\(D C_{3}=A C_{m} /\left[A_{i}\left(E_{2} / C_{2}\right)\right]\)
\(D C_{4}=A C_{m} /\left[A_{i}\left(E_{3} / C_{3}\right)\right]\)
where
\(A C_{m}=\) the minimum accident reduction/cost ratio corresponding to the last (lowest) improvement action selected by the resource allocation model

The decision criteria represent the amount by which the accident reduction/cost ratio for a particular improvement action can be changed and still be selected by the model. The improvement actions corresponding to the decision criteria \(\left(D C_{1}, D C_{2}, D C_{3}\right.\) and \(\left.D C_{4}\right)\) are, respectively, single-track passive to flashing lights, single-track passive to gates, multiple-track passive to gates, and flashing lights to gates. Comparing the \(R\) value to the decision criteria is equivalent to determining if the actual change in
accident reduction/cost ratio due to revised data is still within the limits permitting selection of the same improvement action.

To demonstrate use of the revision procedure, the following example is provided. A single-track passive crossing was selected by the resource allocation model for upgrading to gates. This crossing is listed as the 14 th crossing (ID\# 740858L) on the sample standard output report of the resource allocation model, Figure 5-14. The crossing was inspected by a diagnostic team, and it was found that some of the data from The Inventory used in calculating the predicted accidents were incorrect. In addition, the assumed values for the cost and effectiveness \(\partial f\) gates at the crossing were deemed inappropriate. Using the new data, a revised prediction of accidents was calculated according to the tabularized procedure described in Section 5.1.1. The previous and revised accident prediction, cost, and effectiveness parameters for the crossing are listed below:

Previous Revised

Predicted Accidents, A
0.17
0.20

Warning Device Effectiveness, E
0.84

Warning Device Cost, C
\(\$ 88,500\)
0.95
\$150,000

Using the above data, the \(R\) value is calculated using equation 4-3 (also shown on the worksheet, step 4, part 2):
\(R=(.20 / .17)(.95 / .84)(88,500 / 150,000)\)
\(=0.785\)

The decision criteria for this crossing, obtained from the standard output report of the resource allocation model, Figure 5-14, are:
\[
\begin{aligned}
& D C_{1}=0.482 \\
& D C_{2}=0.809 \\
& D C_{3}=\text { not computed since the crossing is single track } \\
& D C_{4}=\text { not computed since the crossing is passive }
\end{aligned}
\]

Comparing \(R\) with the decision criteria values, as described in step 4, part 3 a of the worksheet, shows that \(R\) is greater than \(D C_{1}\), but less than \(D C_{2}\). This means that the original decision to install gates at this crossing should be revised to install flashing lights as the most cost-effective decision if the new data for the crossing are assumed correct.

\section*{5. APPLICATION OF DOT RESOURCE ALLOCATION PROCEDURE}

\subsection*{5.1 DUT ACCIDENT PREDICITUN FURMULA}

\subsection*{5.1.1 Manual Calculation of Predicted Accidents}

If the number of predicted accidents is required for a few crossings, a convenient manual procedure can bc used, employing the formula tables presented in Section 3.2. Sanual use of the DOT accident prediction formula is illustrated in the following example. Characteristics of the sample crossing for which the number of predicted accidents is to be determined are shown in Table ゝー?.

TAELE 5-1. CHAFACTERISTICS OF SAFPLE CRUSSING
\begin{tabular}{|c|c|}
\hline CHAKACTEKISTIC & VALUE \\
\hline Present warning device & Crossbucks \\
\hline Annual average daily highway traffic & 350 \\
\hline Total number of trains movernents per day & 10 \\
\hline Number of main tracks & 2 \\
\hline lumber of thru trains per day during daylight & 5 \\
\hline Hisitway paved? & yes \\
\hline Haximun timetable speed, mph & 40 \\
\hline Highway type & rural minor arterial (06) \\
\hline Number of nighway laries & 2 \\
\hline Number of years accidenl data, T & 4 \\
\hline Number ot uccidents, ii, in l years & 2 \\
\hline
\end{tabular}

First, the basic formula (Equation 3-2) is used to determine the initial accident prediction (a). The basic formula is repeated below:
\(a=K \times E I \times M T \times D T \times H P \times M S \times H T \times H L\)
where
a = initial accident prediction
\(K=\) constant
\(E I=\) factor for exposure (product of highway and train traffic)
\(M T=\) factor for number of main tracks
\(D T=\) factor for number of thru trains per day during daylight
HP = factor for highway paved (yes or no)
\(M S=\) factor for maximum timetable speed
HT = factor for highway type
HL = factor for number of highway lanes
The basic formula factor values (K, EI, MT, DT, HP, MS, HT and HL) can be determined from Table 3-7 for passive crossings, using the crossing's characteristics listed in Table 5-1:
\(K=.002268\)
\(E I=\) exposure index factor value for the product of 350 average daily highway vehicles times 10 total train movements per day (c \(\mathrm{x} \mathrm{t}=3500\))
\(=25.98\)
\(M T=1.52\)
\(D T=1.55\)
\(H P=1.00\)
\(M S=1.36\)
\(H T=0.82\)
\(H L=1.00\)

Substituting the factor values into the basic formula yields:
```

a = K x EI x MT x DT x HP x MS x HT x HL
=0.002268 x 25.98 < 1.52 x 1.55 x 1.00 x 1.36 x 0.82 x 1.00
= 0.15 accidents per year

```

The final accident prediction (A) is determined by combining the initial prediction (a) with the crossing's accident history using Tables 3-1 thru 3-5, which are developed from the DOT accident prediction formula (Equation 3-1). For the sample crossing, 2 accidents (N) occurred over the past 4 years (T); therefore, Table 3-4 is used. With an initial accident prediction (a = . 15) which is between 0.10 and 0.20 , it can be seen from Table \(3-4\) that the final accident prediction (A) will be between 0.25 and 0.35 . A reasonable estimate of \(A\) can be determined from linear interpolation:
```

A = 0.25 + [(0.15-0.10) /(0.20-0.10)] [0.35-0.25]
=0.30 accidents per year

```
5.1.2. Computer Programs for Calculation of Predicted Accidents

This section describes procedures for using the DOT accident prediction formula computer programs to obtain the number of predicted accidents per year for large numbers of crossings, and to list the crossings ranked by number of predicted accidents. Complete information for making the computer runs is supplied, provided the required input data are available and are in the format specified here. Modifications can be made to the programs to accept a different format. Data in the format specified here can be obtained from the Federal Railroad Administration, Office of Safety.

Three separate FORTRAN programs are used to obtain the number of predicted accidents. The first program uses the basic accident prediction formula to calculate the initial accident prediction (a) for input into the second program, which uses the DOT accident prediction formula to calculate the final predicted accidents (A). The third program generates the output in a report format. The three programs are run sequentially according to the following steps.
1. Execute the basic accident prediction formula program.
2. Execute the DOT accident prediction formula program.
3. Sort the output from step 2 in descending order of number of predicted accidents.
4. Execute the accident prediction report program.

The basic accident prediction formula FORTRAN program is shown in Figure 5-1. This program uses the following equations to calculate the basic number of predicted accidents (a). For warning device classes 1 through 4, the equation is:
\(a=0.00984 e^{2 x}\)
where
\(x=0.3839 \log _{10}(c x t+0.2)+0.1538 \log _{10}(d+0.2)\)
\(-0.3080 \mathrm{hp}+0.003855 \mathrm{~ms}-0.04999 \mathrm{ht}+0.1047 \mathrm{mt}\)

For warning device clases 5 through 7 the equation is:
\(a=0.00551 \mathrm{e}^{2 \mathrm{x}}\)
where
\(x=0.3400 \log _{10}(c x t+0.2)+0.05415 \log _{10}(d+0.2)\)
\(+0.05442 \mathrm{mt}+0.06900 \mathrm{hl}\)

For warning device class 8 the equation is:
\(a=0.00162 e^{2 x}\)
where
\(x=0.3588 \log _{10}(c x t+0.2)+0.1456 \mathrm{mt}+0.05180 \mathrm{hl}\)
```

C
C
C
C
C
C
C
INTEGER YEAR,OLDCL,CLASS,TRAINS,DT,SPEED,TRACKS,PAVE,FC10,FC1,
HT,AADT
DIMENSION EFF(6),ITEM1(5),ITEM3(4)
INTEGER RURAL(9),URBAN(9)
DATA RURAL/1,2,0,0,0,3,4,5,6/
DATA URBAN/1,2,0,3,0,4,5,0,6/
DATA EFF/.35,.16,.36,2.86,6.25,2.78/
NREC=0
HTOT=0.0
100
*
H=0.00551*EXP(2*X)
GD TD 500

```
```

C
4 0 0
`
500
5 5 0
555
c
600 HTJT=HTOT+H
NREC=NGEC+1
NRITE(17,9500) H,ITEM1, YEAK,MONTH, OLDCL,NEACL,TRAINS,DT,SPEED,
TRACKS,ITEN2,FAVE,LANES,FC10,FC1,ARDT, ITEN3
9500 FORMAT(F10.7,5A4,2I2,2I1,I3,I2,I3,I1,A3,4I1,I5,3A4,42)
GO TO 100
LRITE(5,9900) HTOT,NREC
FORMAT(" TOTAL EASIC PREDICTEJ ACCIDEATS = "F10.3 /
- total Numgef of CrosSINGS = *,I6)
STJP
ENJ

```

The variables used in the above equations are as defined in Section 3.2.2. For warning device classes 1 through 4, the appropriate highway type (ht) value is listed in Table 3-6. The equations in Table 3-6 were algebraically derived from the above equations, so the basic number of predicted accidents could be expressed as a product of factors to be looked up in tables. A variable dictionary for the basic accident prediction formula program is given in Table 5-2.

The basic accident prediction formula computes the initial predicted accident rate for each crossing on the basis of the crossing's current warning device class. If, during the last five years, a change in warning device took place, the formula computes the predicted accidents on the basis of the previous warning device class. An adjustment is then made to the predicted accidents using the appropriate effectiveness factor (see Table 4-8) to account for the influence of the warning device change. For individual crossings, this procedure more accurately determines the short term (less than 5 years) change in the crossing's accident rate than use of the basic formula for the new warning device. For example, if a passive crossing was upgraded to gates, the passive formula would be used, the results of which would be multiplied by the effectiveness factor for gates (1.0-0.84) to obtain the initial predicted accidents for the crossing with gates. Similarly, the predicted accidents would be divided by the effectiveness of the new warning device if a downgrade took place.

Sample input to the basic accident prediction formula program is shown in Figure 5-2. Each record represents one crossing, and is formatted according to the data field descriptions given in Table 5-3. Those fields marked with two asterisks are the minimum necessary input to the basic accident prediction formula. Fields 20 through 25 are used in the DOT accident prediction formula. Other fields are used for identification and location of crossings, for the field verification worksheets, and for input to the resource allocation model. The source of fields 1 through 19 is the U.S. DOT-AAR National Rail-Highway Crossing Inventory; fields 20 through 25 are from the FRA Railroad Accident/Incident Reporting System. Both data bases are maintained by the Federal Railroad Administration, Office of Safety.

TABLE 5-2. VARIABLE DICTIONARY FOR THE BASIC
\begin{tabular}{ll}
VARIABLE & VARIABLE \\
NAME & TYPE
\end{tabular}

\section*{DEFINITION}
\begin{tabular}{|c|c|c|}
\hline AADT & Integer & Annual average daily vehicular traffic \\
\hline C & Real & Annual average daily vehicular traffic \\
\hline CLASS & Integer & Warning device class used to calculate H \\
\hline D & Real & Number of daylight thru trains \\
\hline EFF & Real & Effectiveness multipliers \\
\hline DT & Integer & Number of daylight thrutrains \\
\hline FC1 & Integer & Units digit of functional classification of road \\
\hline FC10 & Integer & Tens digit of functional classification of road \\
\hline H & Real & Basic predicted accidents per year \(=a\) \\
\hline HT & Integer & Highway type \\
\hline HTOT & Real & Total basic predicted accidents \\
\hline ITEM 1 & Al phanumeric & Holds data that is input and output only \\
\hline ITEM2 & Alphanumeric & Holds data that is input and output only \\
\hline ITEM3 & Al phanumeric & Holds data that is input and output only \\
\hline K & Integer & \begin{tabular}{l}
Category of upgrade/downgrade - \\
1: Passive to flashing lights \\
2: Passive to gates \\
3: Flashing lights to gates \\
4: Flashing lights to passive \\
5: Gates to passive \\
6: Gates to flashing lights
\end{tabular} \\
\hline LANES & Integer & Number of highway traffic lanes \\
\hline MONTH & Integer & Month of change in warning device class \\
\hline NEWCL & Integer & Present warning device class \\
\hline NREC & Integer & Total number of crossings processed \\
\hline OLDCL & Integer & Former warning device class \\
\hline PAVE & Integer & Is highway paved? - 1: yes, 2: no \\
\hline RURAL & Integer & Lookup table for rural highway types \\
\hline SPEED & Integer & Maximum timetable train speed \\
\hline T & Real & Number of trains per day \\
\hline TRACKS & Integer & Number of main tracks \\
\hline TRAINS & Integer & Number of trains per day \\
\hline URBAN & Integer & Lookup table for urban highway types \\
\hline X & Real & Intermediate variable in calculation of H \\
\hline YEAR & Integer & Year of change in warning device class \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & 荽 & \\
\hline 74070303203102085 & , & 19 & & 01120 & 3 & - 00 \\
\hline \(740705 \mathrm{H} 320310 \angle 02 S P\) & 781248 & 199 & 452 & 01126 & 35003 & 00000 \\
\hline 740715 N 3203101705 P & 700104 & 199 & 451 & O111CS & 15000 & \\
\hline 740716 V 3203101705 P & 700104 & 195 & 450 & 021105 & 1500 & 00000 \\
\hline 740719 E 3203101705 P & 700108 & 199 & 452 & 111205 & 45007 & \(0 \quad 10001\) \\
\hline \(740722 \mathrm{Y} 3203101705 P\) & 8 CO 748 & 199 & 452 & O112CG & 1しCOO & 00000 \\
\hline 740724 M 32031017 CSP & 700108 & 239 & 452 & 211416 & 1540004 & \(1 C C O\) \\
\hline 7407250320310170 PP & 771278 & 239 & 202 & 111215 & 345010 & 01000 \\
\hline 740726832331017 CSP & 800578 & 219 & 202 & 121216 & 1166 & C. 00000 \\
\hline 740727 H 32031 Cl C CSP & 400778 & 259 & 202 & 111217 & 425002 & 000000 \\
\hline 740728 P 32031017 OSP & 800378 & 25 9 & 202 & 011414 & 913502 & 10020 \\
\hline 740729 W 32031017 CSP & 800978 & 259 & 202 & 011415 & 530001 & C 0000 \\
\hline 740730 K 3203101705 P & 700103 & 25 ¢ & 202 & 012416 & 123CCO2 & C \(11 \times 10\) \\
\hline \(740731 \times 3203101705 \mathrm{P}\) & 700108 & 259 & 2 C 2 & 011414 & 1940000 & \(1 \begin{array}{lllll}1 & C & 2 & 0 & 1\end{array}\) \\
\hline 740732 E 3031017 CSP & 700108 & 259 & 202 & 011415 & 1160005 & 00000 \\
\hline 7407331.3203101705 & 700108 & 259 & \(20<\) & 011416 & 1c3ccoc & \(0<116\) \\
\hline 740734 T 32031017 CSP & 810147 & 20 & 00 & 221414 & 1050015 & 00000 \\
\hline \(74073603203101705 P\) & 700104 & 25 & 202 & 111215 & \(7 \cup C 07\) & C C C O O \\
\hline 740740 W 32031017 CSP & 761178 & 27 ¢ & 302 & 011319 & 550013 & 000011 \\
\hline 740744 Y 32.3101905 P & 700106 & 2514 & 702 & 01120 E & \(80 \subset 07\) & C C C u 2 \\
\hline 7407 2R 32029019 CSP & 7 ט0107 & 3314 & 701 & 4112 C & \(175<0\) & 00000 \\
\hline 740756 T 32331 CC 15 SP & 700104 & 2514 & 7 Cl & O112Cs & 6501 & C0000 \\
\hline \(74076303200160915 P\) & 700104 & 2914 & 70 & \(01210 c\) & 1025 & 00010 \\
\hline \(74076553200101305 P\) & 750978 & 2011 & 701 & 0212C5 & 54 C15 & 00010 \\
\hline 740768 N 3202701305 P & 700104 & 2011 & 70 & 01210 k & 5 CJC & 00000 \\
\hline 74076 GU320270130SP & 750878 & 2011 & 7 Cl & 011206 & 16516 & C C C O 0 \\
\hline 740770 N 2027013 CSP & \(7 \mathrm{COLC4}\) & 2011 & \(70<\) & 012105 & 5314 & 00000 \\
\hline \(740771 \vee 32027313 \mathrm{CS}^{\circ}\) & 700104 & 2011 & 702 & 0121 C & 500 & C O i 0 0 \\
\hline 740772 C 32027013 CSP & 700107 & 2211 & 402 & 3122 CS & 100 & 000000 \\
\hline 7\%0773J32J27013CSP & 700107 & 2211 & 402 & \(11120 ¢\) & 20606 & C C O 000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { DATA } \\
& \text { FIELD }
\end{aligned}
\] & COLUMN & LENGTH & \[
\begin{aligned}
& \hline \text { DATA } \\
& \text { TYPE* }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FIELD } \\
& \text { DESCRIPTION }
\end{aligned}
\] \\
\hline 1 & 1 & 7 & A & CROSSING ID NUMBER \\
\hline 2 & 8 & 2 & I & State fips code \\
\hline 3 & 10 & 3 & I & COUNTY FIPS CODE \\
\hline 4 & 13 & 4 & I & CITY FIPS CODE \\
\hline 5 & 17 & 4 & A & fra railroad code \\
\hline 6 & 21 & 4 & I & **YEAR AND MONTH OF LAST CHANGE IN WARNING DEvICE \\
\hline 7 & 25 & 1 & I & **FORMER WARNING DEvice class \\
\hline 8 & 26 & 1 & I & **PRESENT WARNING DEVICE CLASS \\
\hline 9 & 27 & 3 & I & **TOTAL NUMBER OF TRAINS PER DAY \\
\hline 10 & 30 & 2 & I & **NUMBER OF DAYLIGHT THRU TRAINS \\
\hline 11 & 32 & 3 & I & **maximum timetable speed \\
\hline 12 & 35 & 1 & I & **NUMBER OF MAIN TRACKS \\
\hline 13 & 36 & 2 & I & NUMBER OF OTHER TRACKS \\
\hline 14 & 38 & 1 & I & DO PASSENGER TRAINS OPERATE OVER CROSSING? -- \\
\hline 15 & & 1 & I & 1: YES, 2: NO \\
\hline & 39 & & & 1: YES, 2: NO \\
\hline 16 & 40 & 1 & I & **NUMBER OF TRAFFIC LANES \\
\hline 17 & 41 & 2 & I & **FUNCTIONAL CLASSIFICATION OF ROAD \\
\hline 18 & 43 & 6 & I & ** EStimated annual average DAILY TRAFFIC \\
\hline 19 & 49 & 2 & I & estimated percent truck traffic \\
\hline 20 & 51 & 2 & I & NUMBER OF ACCIDENTS IN 1975 \\
\hline 21 & 53 & 2 & I & NUMBER OF ACCIDENTS IN 1976 \\
\hline 22 & 55 & 2 & I & NUMBER OF ACCIDENTS IN 1977 \\
\hline 23 & 57 & 2 & I & NUMBER OF ACCIDETNS IN 1978 \\
\hline 24 & 59 & 2 & 1 & NUMBER OF ACCIDENTS IN 1979 \\
\hline 25 & 61 & 2 & I & NUMBER OF ACCIDENTS IN 1980 \\
\hline
\end{tabular}
* DATA TYPE:

A - Alphanumeric
I - Integer
** Input to basic accident prediction formula

Sample output from the basic accident prediction formula program is shown in Figure 5-3. The field descriptions and the data contained in them are identical to the input (Table 5-3 and Figure 5-2), except that a field of length 10 has been added to the beginning of each record. This field contains the initial predicted accidents (a) and is a real number in F 10.7 format. The program also writes a second output file, containing the total number of crossings (records) processed and the total initial numbers of predicted accidents for those crossings.

The output shown in Figure \(5-3\) is also used as input to the second FORTRAN program, the DOT accident prediction formula program, which is shown in Figure 5-4. This program uses an algebraic equivalent of equation 3-1 from Section 3.2.1 to calculate the final predicted accident rate (A). The equation used is:
\[
\begin{aligned}
& A=\left(T_{0} \times a+N\right) /\left(T+T_{0}\right) \\
& \text { where } \\
& T_{0}=1 /(0.05+a)
\end{aligned}
\]

A value of 5 is used in the formula for the maximum number of years of accident history, even though 6 years are available. The most recent 5 years are used.

If a crossing has been upgraded or opened during the 5-year period, the value of \(T\) is reduced from 5 to the number of years since the crossing has been upgraded or opened. This same method is used for crossings which have been downgraded and private crossings which have changed to public crossings in the 5-year period. A variable dictionary for the DOT accident prediction formula program is given in Table 5-4.

Sample output from the DOT accident prediction formula program is shown in Figure 5-5. The field descriptions and the data contained in them are identical to the input (Figure 5-3) except that another field of length 10 has been added to the beginning of each record. This field contains the final predicted accidents (A), and is a real number in F10.7 format. The program al so writes a second output file, containing the total number of crossings

```

IHIS FROGRaN CALCULATES PREDICTEC ACCICENTS USING
THE ACCIOEVT HISTLRY FORMULA IT=5; 1976-801
INPUT MUST EE IN THE GO CHAFACTEK FERMAT PLUS
SIX YEARS BF ACCIDFNT HISTCRY
UNII 16 - INVENTLFY INPUT FILE NIIF OASIC PKECICTED
ACCIDENTS
LNIT 17 - INVENTORY GJTHUT FILE W[TH FINAL PFECICTED
ACCIDENTS
UNIT j - SUMOMAKY ULTPUT FILE

```
INTFGER YEAK, ACC(5) ,TA
FEAL \(\Lambda\)
[IMEVSIEN ITEM1(5), ITEM2(8)
NREC= C
AJJT=C.
REA) (L4, SlCC,ENC=CyS) H.ITEMI,YEAR, ITENZ, ACC
FERMATIFlO.7,5A4, [2,7n4, \(12,5 \mathrm{I} 21\)
 CALCULATF NLMBER CF YEARS
TA=3)-YEAR
IF(TA.LT.O) T \(\Delta=0\)
JF(TA.GT.5) TA=5
\(T=T A\)
C
\(C\)
CO ? \(\mathrm{C}: \mathrm{C} \quad I=0-\mathrm{TA,5}\)
 \(A=i+A C C(I)\)
 calculate peecictec accidenis
 \(T O=1 . /(.25+H)\)
 \(A=(+\ldots J C+N) /(T+T 0)\)
 \(A T O T=A T O T+\Delta\)
 \(\triangle R E C=A R E C+1\)
 WKITE(17,gGCO) A,II, ITEAL, YEAR,ITEM2,ACG
990? FOK 1AT (2FIC.7,5A4,I2,7A4,A2,5I21
 CO TO 100
 S9O WPITE15,95971 ATCT, AREC
 SCOQ FORAMT1 TOTAL PKEOICTEO ACLICESTS = 1 , FIU. \(3 /\)
 calculate number of accidents
 \(A=0\).
 - tutal vuaeep if CRCSSIivgj = , , le)
STOM
FN.

\section*{TABLE 5-4 VARIABLE DICTIONARY FOR THE DOT ACCIDENT PREDICTION FORMULA PROGRAM}
\begin{tabular}{lll}
VARIABLE & VARIABLE & \\
NAME & TYPE &
\end{tabular}
\begin{tabular}{lll}
A & Real & Final predicted accidents per year \\
ACC & Integer & Accident history for 1976 through 1980 \\
ATOT & Real & Total predicted accidents \\
H & Real & Initial predicted accidents per year = a \\
I & Integer & DO loop index \\
ITEM1 & Integer & Holds data that is input and output only \\
ITEM2 & Integer & Holds data that is input and output only \\
N & Real & Number of accidents in T years \\
NREC & Integer & Total number of crossings processed \\
T & Real & Number of years of accident history \\
TO & Real & I/ (.05 + H); weighting factor in accident \\
& Integer & Number of years of accident history \\
TA & Integer & Year of upgrade or opening of crossing
\end{tabular}

FIGURE 5-5. SAMPLE OUTPUT FROM THE DOT ACCIDENT PREDICTION FORMULA PROGRAM
(records) processed and the total final predicted arisdents for those crossings.

The output shown in Figure \(5-5\) is used as input to the accident prediction report program and also to the resource allocation program (see Section 5.2). The accident prediction report program generates the output in a report format. The data must first be sorted in descending order of number of predicted accidents (the first 10 columris), and then used as input to the accident prediction report program shown in Figure 5-6. Sample output from the accident prediction repori program is shown in Figure \(5-7\).

The basic formula and the DUT accident prediction formula programs and their inputs and outputs are currently designed for use with the 1980 data file which has six years of accident history appended to each crossing record. at a future time, if accident data beyond 1980 is to be added, appropriate modifications to the programs and data files will be required to accomodate the aditional data.

\section*{5.Z OUMPUTEK PROGFAHS FOR RESCURCE ALLOCATION HODEL}

This section is a description of the computer programs for the resource allocation model discussed in Section 4 . is in the case of the accident prediction formula programs, complete information is supplied for making the necessary computer runs, provided the required input deta are available and in the format specified in Section 5.1.2.

The resource allocation model is run by a sequence of three FORTRAN programs. The first program calculates the accident reduction/cost ratios for all crossings, the second program runs the resource allocation algorithm, and the third program generates the output in a report format. The three programs are run sequentially according to the following steps.
1. Execute the accident reduction/cost ratio program.
2. Sort the output from step 1 in descending order of accident reduction/cost ratio.
3. Execute the resource allocation alforithm program.
```

this progkim prints the curput uf the accident
PREDICTICA FCRMULA IN A REPGRT FGRMAT
UNIT 20 - INVENTORY INPUT FILE WITh FINAL PRECICTED
A CCIDENTS SURIED IN CESCENDING UROER OF
3 FEDICTED ACCIDENTS
UNIT 2l - 2EPORT CUTPUT FILE

```

INTEGER ID（Z），STATE，ISTATEISOI，COLNTY，CITY，YEAR，OLOCL，TRAINS，DT，
SPEED, GTRKS, AMTRAK, PAVFD, \(A A D T\), TRUCKS, PAVE (2I, PAGE,RAINK, CAY(2I
[ATA PAVF/'YFS', 'NC \(1 /\)

 \({ }^{\prime} K Y^{\prime},{ }^{\prime} L A^{\prime},{ }^{\prime}\) ME', 'MD', 'MA', 'MI', 'MN', 'MS', 'MU', 'MJ',

 'UR', 'PA', 'FF', 'FI', 'SC', 'SE', 'TN', 'TX', 'UT', 'VJ',

 PASE=0
 \(R \triangle N K=C\)
 CALL [ATE(CAY)
 \(P A C E=P A C E+1\)
 MRITE (2I,1LO) DAY,PAGE
 FCRAATI'L', T3,2A5,T54, 'PUELIC FAIL-HICHINAY CKOSSINGS',
 T12力, 'PAGE 1.I3
 hRITE(21,120)
 FUR1ATYT49, 'RANKEC AY PKEOICTEU ACCILENIS PLR YEAR'/
 T56.'INVENTCRY CATE: JUNE LS81'/)
 WRITE (21,140)

 T43, OF ACCIDENTS', TOO, 'OATE', T6B,'WARNING',
 「77, TRAINS', T35, 'DAY',TG3,' OF', TIUO.'TIME',
 T1C8,"IS', T115,' LF',T123,'FUNC.'/
 T3,'RANK', TG, 'ACCICENTS',TZZ, 'II ',T 30,'STATE',

 T78, 'PER', TE5.'THRU', I93.'MAIN', TIOC, 'TAELE',

 T43.'76 777879 عO', T59, 'CHANGE', TOタ,'CLASS', T78, 'CAY',
 T8ヶ,'TKAIAS', T92, 'TKACKS', T100, 'SNEEJ', TLO7, 'PAVLD',
 TIIj,'LANES'//)
 LINE \(=10\)
 REA)(20, 21C,END=GCO) A.H,ID,STATE,CCUNTY,CITY,FRCAL,YEAK,
 MONTH, DL DCL ,NEWCL, TRAINS, OT, SPEED, MTRKS, UTRKS, AMTRAK,
 PAVED,LANES ,FC, \(\triangle A C T, T R U C K S, N 75, N 76, N 77, V 78, N 79, A B O\)

 A2, I6, (2, 6 i2)
 \(K=P A V E D\)
 RASK=RANK+1
 IF(YEAR.LT.76) GIJ \(\quad 230\)
 HRITE (21,220) R,NNK, A,ID, ISTATEISJATE), RRLD[, N76,N77,N78,N79.
 : 180, MCNTH,Y EAK, NENCL, TFA[INS, DT, MTRKS, SPEED, PAVE(K),
 LANES,FC, AA C.T
 FO《MATIT2, [5, T9,F7.4, T20, A4, A 3, T32, A2, T37, A4, T42,
 5[3,T60,I2, 1/, I2, T7l, I1, T7B, I3, Tet, I2, TH5, II, Tlul, I3,
 T1C3, A3, T116, I2, 「124, A2, T12女, 16)
 GC Tf 250
 HRITE (21,240) RANK, A, IO,ISTATE(STATE), RHUAC,N76,N77;N78,N79,
 A \(80, N E W C L, T F A I N S, C T, M T R K S, S P E E D, P A V E(K)\),
 LANES,FC, AA UT
 FOR1ATIT2,15,T9,F7.4,T20,44, A3, T32, A2, T37, A4, T42,
 \(5[3,171,11,178,13, T 86, I 2, T G 5,11,1101,13\),
 T103, A3,T116, \(12, \mathrm{~T} 124, A 2, \mathrm{~T} 128, \mathrm{I} 61\)
 \(L I \downarrow E=L I N F+1\)
 IF(LINE.LT.60) SU I C 200
 GU TO 10
 STUP
 END

hariving
CTVICE

\(\qquad\) \# ur LAFFIC
LANES
\begin{tabular}{|c|c|c|}
\hline 1 & 0.7507 & 74CH54 \\
\hline , & (1.536\% & 8040976 \\
\hline ? & 0.45 t & 74ceszV \\
\hline 4 & 1.4725 & 83 467 SE \\
\hline ! & 0.46 ¢ 4 & 74.731x \\
\hline f & 0.4325 & 74073 12 \\
\hline 7 & 0.4141 & \(74 C 744 \mathrm{Y}\) \\
\hline + & 0.4113 & 7408558 \\
\hline \(\varsigma\) & 0. 38.64 & 8334751 \\
\hline 10 & 0.3424 & 804244 G \\
\hline 11 & 0.7251 & \(74.9856 \times\) \\
\hline 12. & 0.32 es & 833479 V \\
\hline 1 ? & 0.32 t5 & 740730 R \\
\hline 14 & 0.311 C & 74.67\% \({ }^{\text {N }}\) \\
\hline 15 & 0.30 EE & 74 J857E \\
\hline 16 & \(0.28 \leq 2\) & 834206x \\
\hline 17 & 0.3844 & H33481m \\
\hline 18 & 0.2211 & 740724 M \\
\hline 14 & \(0.20 \leq 8\) & 74CE42P \\
\hline 20 & 0.2053 & 74072 BP \\
\hline \(? 1\) & \(0.151 t\) & 140734 \\
\hline 27 & 0.1488 & 8334164 \\
\hline 23 & 0.1561 & 8C420st \\
\hline 24 & 0.1733 & 74 C 729 H \\
\hline 25 & 0.1724 & 14 Cgosp \\
\hline ? 6 & 0.16 E 1 & 74 C85 8L \\
\hline 27 & 0.14E3 & \(74.775 \times\) \\
\hline 29 & 0.1455 & 74 C84 \(1+1\) \\
\hline 29 & 0.1?15 & \(74 \mathrm{Cl27H}\) \\
\hline 30 & (1.1234 & E04193r \\
\hline 11 & 0.1227 & H04003 1 \\
\hline 12 & 0.10 ct & 74 C7190 \\
\hline 33 & 0.1 ¢¢s & d3 3592 N \\
\hline 14 & 0.1051 & H33601k \\
\hline 35 & 0.1037 & 74 Ce5 30 \\
\hline 36. & 0.1024 & 13334259 \\
\hline 31 & C.astl & 74 [970. \\
\hline 31 & U.0cer & 7407655 \\
\hline 3 ; & 0.0725 & 74.7325 \\
\hline 40 & 0.0932 & \(74 \mathrm{C9142}\) \\
\hline 41 & 0.0927 & 14CH82M \\
\hline 42 & 0.09 C & 8335749 \\
\hline 43 & O.CAS5 & d3359') \\
\hline 4 & 0.0 cos 1 & 8041351 \\
\hline 45 & 0.0975 & \(740 \mathrm{~d}^{3} \mathrm{3m}\) \\
\hline 411 & 0.684 C & 14C736\% \\
\hline 47 & 0.0825 & 834521 V \\
\hline 4 t & 0.0917 & 74.67268 \\
\hline 44 & 0.0411 & A0423 8 \\
\hline & 0.08 C 7 & \\
\hline
\end{tabular}

25300
440 C 500
15400 15300
800 1200
5870 5870
17000 2400 2200
12300
5500 5500 12600 12675
19400
\(\square\) 9400
1300
9135 \(\begin{array}{r}911 \\ 105 \\ \hline\end{array}\) 900
13800 5300 1100
200
200
2230
80
4250
5975
1230
450
15260
19900
3400
80
15
540
11600
\(20 C\)
1000
11100
19900
200
800
700
3600
1100
375 4250
5975 5975
1230 19260 19900
3400
11600
FIGURE 5-7. SAMPLE OUTPUT FROM THE ACCIDENT PREDICTION REPORT PROGRAM
4. Sort the output from step 3 in descending order of accident reduction/cost ratio.
5. Execute the resource allocation report program.

The accident reduction/cost ratio program is shown in Figure 5-8. This program reads two input files. One input file is the output of the accident prediction formula program (see Figure 5-5). The second input file contains cost, effectiveness and funding data. This file is to be generated by the user. Suggested values for cost and effectiveness data are given in Section 4.2.3 and 4.2.4. A sample input file of this type is shown in Figure 5-9. The first line of input contains the cost data in 3 fields, each of length 10. The first entry on the line is the cost of upgrading a passive crossing to a flashing light; the second entry is the cost of upgrading a passive crossing to a gate; and the third entry is the cost of upgrading a flashing light to a gate. The second line of input contains the effectiveness data in 3 fields, each of length 10. The order is the same as for the cost data on the first line. The third and last line consists of 1 field of length 10 containing the maximum amount of available funding in dollars. This value is to be established by the user.

The program in Figure \(5-8\) calculates an accident reduction/cost ratio for each crossing, depending on the present warning device and the number of tracks at the crossing. If the crossing already has gates (warning device class 8), it is deleted from consideration. If the crossing has flashing lights or other active devices (warning device classes 5,6 and 7), an accident reduction/cost ratio for upgrading to gates is calculated according to the equation:
\[
A R / C=A\left(E_{3} / C_{3}\right)
\]
where \(A\) is the number of predicted accidents for the crossing from the accident prediction formula and \(C_{3}\) and \(E_{3}\) are the cost and effectiveness of the upgrade, as discussed in Section 4. If the crossing is passive (warning device classes 14) but has multiple tracks, an accident reduction/cost ratio for upgrading to gates is calculated according to the equation:
```

C THIS PROGRAN CALCULATES AN INITIOL EENEFIT/CUST RATIO
FOR EACH GOSSING hHICH DDES NOT CURRENTLY HAVE GATES
INPLT MLST EE IN THE 7O CHARACTER FCRMAT PLLS SIX
YEARS OF ACCIOENT HISTORY
LNIT 20 - INVENTCRY IAPUT FILE WITH FINAL PKECICTED
accinents
UN[T 21 - INITIAL dENEFIT/COST KATIL CUTPUT FILE.
UNIT 22 - OUST/EFFECTIVENESS/PUDGET LEVEL INPLTFILE
INTEGER 1O(2),CLASS,CTEKS,TRACKS
R.EAD IN COST AIND EFFECTIVENESS OATA
REA!)(22,50) C1,C2,C3
FDEMAT(3FLC.O)
FEAJ(?2,55) E1,E2,E3
FCRYAT(3F1C.2)
Fl=E1/Cl
R2=E2/C?
F3=E3/C3
C IF GATES AZE ALWAYS MCRE COST-EFFECTIVE THAN
IFI२2.GI.F1) Rl=R2
FEAI)(2C,ICOO,END=SUC) A,IC,CLASS,MTRKS,OTRKKS
FCRHATIF10.7,10X, A4,A3,18X,11,8X,I1,I21
DELFTE CRIISSINGS WHIGH CURHENTLY HAVE GATES
IFICLASS.EQ.BI GC TC }10
TRACKS=MTKKS+UTRKS
IFICLASJ.GT.4) GU TG 300
IF(TPACKS.GT.1) GU TO 200
SINGLE TRACK pASSIVE CROSSINGS
PENCOS=A*R1*10.***
CC T7 400
MULTIPLE THACK PASSIVE CROSSIAǴS - GATES CALY
EENCOS=A*R2*10.***
CO TO 400
CKOSSINGS nITH FLASHING LIGHIS
RENCOS=A*R3*1O.**%
WR[TE{21,4000) GENCOS,A,IC,CLASS,TRACKS
FORMAT(F10.6,F10.7,A4,A3,I1,I2)
Cu Til 100
STiJD
EN')

```
 FIGURE 5-8 ACCIDENZ REDUCTIUA/COST RATIO PRUǴRAM
\begin{tabular}{lrrr}
& \multicolumn{1}{c}{\(\mathrm{P} \rightarrow \mathrm{FL}\)} & \(\mathrm{P} \rightarrow \mathrm{G}\) & \(\mathrm{FL} \rightarrow \mathrm{G}\) \\
COST & 36700. & 54700. & 49200. \\
EFFECTIVENESS & .65 & .84 & .64 \\
TOTAL BUDGET & 10000 CO & &
\end{tabular}

FIGURE 5-G. SANPLE INPUT TO THE ACCIDENT REDUCYION/COST RATIO PROGRAM
\[
A K / C=A\left(E_{2} / C_{2}\right)
\]

This forces gates to be installed at multiple track passive crossings in accordance with Federal guidelines. If the crossing is passive but has only one track, an accident reduction/cost ratio is calculated for upgrading to flashing lights according to the equation:
\[
A R / C=A\left(E_{1} / C_{1}\right)
\]

The increnental accident reduction/cost ratio of installing a gate at the passive crossing,
\[
A K / C=A\left(E_{2}-E_{1}\right) /\left(C_{2}-C_{1}\right)
\]
is not calculated by the accident reduction/cost ratio program, but is calculated later by the resource allocation algorithm program. However in the case where \(E_{2} / C_{2}\) is greater than \(E_{1} / C_{1}\), the accident reduction/cost ratio program calculates a ratio given by:
\[
A R / C=A\left(E_{2} / C_{2}\right)
\]
for all passive crossings, regardless of the number of tracks. In this case, the installation of gates is always more cost-effective than installation of flashing lights. The resource allocation algorithm program does not calculate the incremental accident reduction/cost ratio in this case.

For convenience of storage, all accident reduction/cost ratios are multiplied by \(10^{6}\), i.e., they are expressed in accidents per million dollars. A variable dictionary for the accident reduction/cost ratio prograni is given in Table 5-5.

Sample output from the accident reduction/cost ratio program is shown in Figure 5-1U. Field descriptions for this output are given in Table 5-6. This output bust be sorteu in descending order of accident reduciion/cost ratio (the first 10 columns), and then used as input to the resource allocation program.

TABLE 5-5. VARIABLE DICTIONARY FOR THE ACCIDENT REDUCTION/COST RATIO PROGRAM
\begin{tabular}{|c|c|c|}
\hline VARIABLE NAME & VARIABLE TYPE & DEF INTION \\
\hline A & Real & Predicted accidents per year \\
\hline BENCOS & Real & Accident reduction/cost ratio in accidents per million dollars \\
\hline C 1 & Real & Cost of upgrading from passive to flashing lights \\
\hline C2 & Real & Cost of upgrading from passive to gates \\
\hline C3 & Real & Cost of upgrading from flashing lights to gates \\
\hline CLASS & Integer & Present warning device class \\
\hline E 1 & Real & Effectiveness of upgrading from passive to flashing lights \\
\hline E2 & Real & Effectiveness of upgrading from passive to gates \\
\hline E3 & Real & Effectiveness of upgrading from flashing lights to gates \\
\hline ID & Integer & Crossing identification number \\
\hline MT'RKS & Integer & Number of main tracks \\
\hline \begin{tabular}{l}
UTRKS R1 \\
R2
\end{tabular} & \begin{tabular}{l}
Integer \\
Real \\
Real
\end{tabular} & Number of other tracks Ratio of E1 and C1 Ratio of E 2 and C 2 \\
\hline \begin{tabular}{l}
R3 \\
TRACKS
\end{tabular} & Real
Integer & Ratio of E3 and C 3
Total number of tracks \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { O} \\
& \text { 曷 } \\
& \text { 灾 } \\
& \text { 念 } \\
& \text { B } \\
& \text { 足 }
\end{aligned}
\] & & \\
\hline 9.765544 & C． 7507262740854 J 7 & 7 \\
\hline 6.317263 & \(0.4856473740852 \mathrm{V7}\) & 73 \\
\hline 6.143866 & 0.4725403833473 E 7 & 72 \\
\hline 5.38533 & \(0.4140897740744 Y 6\) & 62 \\
\hline 5.350283 & \(0.4113030740855 R 7\) & 72 \\
\hline 4．76E．600 & 0． 3664324833475 T 7 & 72 \\
\hline 4.454577 & C． \(3424456804244 \mathrm{G7}\) & 7 \\
\hline 4.281244 & \(0.329120674 C 856 \times 7\) & 72 \\
\hline 4.277769 & \(0.3288535833475 \vee 7\) & 72 \\
\hline 4.013593 & 0．3085757740857E7 & 73 \\
\hline 3.697 CO 2 & 0.2843608833481 W 7 & 7 \\
\hline 3.053000 & \(0.1723771740901 P 4\) & 4 \\
\hline 2.971793 & 0.168130874085814 & 4 \\
\hline 2.729020 & \(0.2097934740842 P 7\) & 77 \\
\hline 2.492476 & \(0.1916091740734 T 7\) & 72 \\
\hline 2.456442 & 0.188839083347647 & 73 \\
\hline 2.080327 & \(0.1354689740841 \mathrm{H4}\) & 4 \\
\hline 1.813569 & \(0.1023969833425 P 4\) & 4 \\
\hline \(1.650 ¢ 67\) & \(0.693165374 C 914 R 4\) & 41 \\
\hline 1.605422 & \(0.1234168904193 Y 7\) & 73 \\
\hline 1.435197 & 0.081 C 89890423804 & 41 \\
\hline 1.421897 & 0.080282574076304 & 41 \\
\hline 1.415949 & \(0.1088511833592 N 7\) & 72 \\
\hline 1．367659 & 0． 1051388833601 K 7 & 71 \\
\hline 1．349578 & \(0.1037488740853 C 7\) & 72 \\
\hline 1．343644 & 0．0874568740843n4 & 46 \\
\hline 1．290033 & 0．c840C57740736G4 & 43 \\
\hline 1.283571 & C．0986745740876J7 & 72 \\
\hline 1.181554 & 0.076941774078754 & 42 \\
\hline 1.177633 & \(0.0905305833574 R 7\) & 71 \\
\hline
\end{tabular}

TAELE 5- 5. FIELD DESCRIPTIONS FOR THE OUTPUT FROA
THE ACCIDENT REDUCTICN/COSN RATIO PROGRAH
\begin{tabular}{|c|c|c|c|c|}
\hline FIELD & COLUNA & LENGIH & DAT'A TYPE* & FILLD DESCRIPTICN \\
\hline 1 & 1 & 10 & F & Accident reduction/cost ratio in accidents per million dollars \\
\hline 2 & 11 & 10 & F & Predicted accidents per year \\
\hline 3 & 21 & 7 & A & Crossing identification number \\
\hline 4 & 28 & 1 & I & Present warning device class \\
\hline 5 & 29 & 2 & I & Total number of tracks \\
\hline
\end{tabular}
* DATA TYPE:

I - integer
A - alphanumeric
F - fixed decimal

The resource allocation program (Figure 5-11) performs the algorithm described in Section 4, recommending the crossings to be improved and the warning device to be installed. A variable dictionary for the program is given in Table 5-7. The program reads each crossing in order, starting with the highest accident reduction/cost ratio.

If the crossing is passive with single track, an additional incremental accident reduction/cost ratio is calculated for making an upgrade to gates given by the following equation:
\(A R / C=A\left(E_{2}-E_{1}\right) /\left(C_{2}-C_{1}\right)\).

It is temporarily assumed that a flashing light will be recomended at the crossing. Since this is only a temporary decision, this crossing is not written to the output file immediately. Instead, it is stored in a separate list of crossings until it is determined whether or not sufficient funding is available to install a gate.

Every time a crossing is read in, the accicient reduction/cost ratio calculated by the first program is compared with the incremental accident reduction/cost ratio calculated for the crossings stored in the temporary decision list. All crossings stored in the temporary list with incremetal accident reduction/cost ratios greater than the accident reduction/cost ratio for the crossing that has just been read are recommended for gates, and that decision is finalized by removing the crossing from the temporary list and writing it into the output file. If the crossing that has just been read is passive with single track, it is added to the temporary list as described above. Ctherwise a gate is recommended and the crossing is immediately written to the cutput file. Each time a crossing is written either to the output file or the temporary list, the cost of the recommended upgracie is added to the cumulative anount spent. When tris amount exceeds the maximum amount allowed, those passive single track crossings still on the temporary decision list are recomended for flashing lights and are writter t. the output, file as final cecisions. The minimum accident reduction/cost ratio for the run is written to a separate file to be read by the resource allocation report program for use in calculating the decision criteria.
```

C
C
C
C
c
\sigma
C
C
INTEGFP ID(2),XID,GLASS,PC,TRACKS,TKKS
REAL NAXAMT
CIMENSICN BCGATE(50C),BC(50C)
CCMMON /AA/ XIO(2,500),PA(500),PC(5CO),TRKS(5CC)
CO4MON /BB/ MAX,E2,C2,C1,GATF,COST,MAXAMT,BCMIN
[ata gate/'gate '/,light/'LIGHT'/
NAX=1
NIN=1
CCST=C.
gCGATE(1)= -9999.
fEAD in cest and effectivness cata
REA)(22,10) C1,C2,C 3
FORYAT(3F10.0)
READ(22,20) E1,E2,E3
FORMAT(3F1).2)
RFA: in tGTal budeET amulnt
REAO(22,301 MAXAMT
FCRMAT(F10.0)
F1=El/Cl
R2=E2/C2
SELECT A CROSSING
FEAS(20,101,FND=400) BENCOS,A,IE,CLASS,TFACKS
FIDRIATIF10.6,F10.7, A4,A3,11,121
IFICLASS.GT.4I GO FE 200
IF(TAACKS.GT.1) GU TG 3CO
if gates are aliways moke cust-effective thain
flashing lights, uSe a gates coly feligy
IF(R2.GT.R1) GO TD 30)
SINGLF TRACK pASSIVE CROSSINGS
BCGATE(MIN)=A*(E2-E.1)/(C2-C1)*10.\#\#6
CHECK THE TEMPORARY DECISIDN lIST
IFLAG=0
IF(BEACCS.LT.BCGATE(MAX)] CALL GATES(IFLAG)
IF(IFLAG.EQ.1) GO TC IIC
IF(IFLAG.EG.2) GU (IC 40J
ADD the selected cküsSing Tu the bgitcn cf the
TENOGFARY DECISICN LIST
RC(1INI=3ENCOS
XIO(1,MIN)=IC(1)
xIO(2,M[N)=IC(?)
FA(M[N)=a
PC(4IN)=CLASS
TRKS(N[N)=TKACKS
N[N=M[N+1
RCAIN=RENCOS

```
c
check to see if tre budget is expended
\(\operatorname{COST}=\mathrm{CCST}+\mathrm{C} 1\)
IF(COST.GE. MAXA:11) CO TU 400
en TO 100
flashing light chCSSIngj
IFL \(17=0\)
If(bences.lt.bGGate (max)) call gates (iflag)
IFIIFLAG.EG. 11 GOTO 200
IFIIFLAG.EQ.2) GO TC 400
EENFIT=A*E 3
reclnmend sates at selected crossing
WRITE(21,201) BENGJS.A,IO,CLASS, TRACKS,GATE,C3,BENFIT
FORMAT(F3.4.F7.4, A4, A3, Il, I2, A5,FI.O.F7.4)
EC 1 IV \(\mathrm{V}=3 \mathrm{ENCOS}\)
check to ste if tre eudget is expenjed
\(\operatorname{COST}=\operatorname{Cos} T+\operatorname{C3}\)
IFICIST.GE.MAXAMI) CO TO 400
6010100
Multiple ruack passive crossings
CHECK THE TEMPORAKY DECISICN LIST
\(1 F L A S=0\)

IFIIFLAGEG.I) GU TC 300
IF(IFLAG.EG.2) GO I C 400
EFVFIT=A*E2
RECCMMEND GAIES AT SELECTED CRUSSING
hRITE(21,201) BENCOS,A,[1),CLASS,TRACKS,'JATE,C2,BENFIT
ECAIN=BENCOS
ChECK tin St f if the budget is expended
\(\cos T=\cos T+C 2\)
IFICDST.LT.NAXAMT) GC TC 100
budget expended: recommend flashing lights at trose
IF(AAX.GE.MIN) GO TC 500
CC \(410 \mathrm{~K}=\mathrm{MAX}, \mathrm{MIN}-1\)
EEVFIT=PA(K)*EI
WRITE(21,201) BC(K),PA(K),XIC(1,K),XIC(2,K),PC(K),TRKS(K),LIGHT,
Cl,3ENFIT
WRITE 23,5011 BCMIN
FOR1AT(FE.4)
STIP
ENJ
```

    SU3R!)UTINE GATES([FLAG)
    THI's SUBROUTINE F.ECEnMENDS GATES AT SINGLE TRALK
    PASSIVE CRUSSINGS
    INTF:GER XIC,PC,TRKS
    REAL NAXAMT
    COMADN /AA/ XIG(2,500),PA(500),PC{50C),TRKS(5CC)
    CCMMCN /EB/ MAX,E2,C2,CI,GATE,CCST,NAXAMT, ECMIN
        TURN UN FLAG TO INDICATE SUQRCUTINE GATES HAS
        BEEN (Alle)
        IFLAG=1
        REVFIT=PA(NAX)*E2
        EENCOS=&ENFIT/C 2*10.***
            FINALIZE THE RECOMMENLATION OF GATES ANU KEMLVE
            CRLSS[NG FRCM THE TEMPGRARY CECISICN LIST
        WRITE(2L,2OL) BENCSS,PA(MAX),XIU(1,MAX),X[C(2,MAX),PC(NAX),
                    TRKS(MAX),うATE,C2,BENFIT
    201 FOR4AT(F8.4,F7.4,A4,A3,[1,I2,A5,F7.0,F7.4)
NAX=4\DeltaX+1
RCHIN=BENCCS
C
GHECK TO SEE IF THE BUDGET IS EXPENCED
COST=COST+C2-C1
IF(COST.CF.MAXAMTI IFLAG=2
RETJRN
END

```

TABLE 5-7. VARIABLE DICTIONARY FOR THE RESOURCE ALLOCATION PROGRAM
\begin{tabular}{|c|c|c|}
\hline VARIABLE NAME & VARIABLE TYPE & DEF INITION \\
\hline A & Real & Predicted accidents \\
\hline BC & Real & Accident reduction/cost ratio stored for passive crosssings with single track \\
\hline BCGATE & Real & Incremental accident reduction/cost ratio stored \\
\hline ECMIN & Real & for passive crossings with single track Minimum accident reduction/cost ratio for the run \\
\hline BENCOS & Real & Accident reduction/cost ratio \\
\hline EENF IT & Real & Accidents prevented \\
\hline C 1 & Real & Cost of upgrading a passive crossing to flashing lights \\
\hline Cl & Real & Cost of upgrading a passive crossing to gates \\
\hline C3 & fieal & Cost of upgrading a flashing-lights crossing to gates \\
\hline \[
\begin{aligned}
& \text { CLASS } \\
& \text { COST }
\end{aligned}
\] & Integer Keal & Present warning device class Cumulative cost of upgrades \\
\hline E 1 & Real & Effectiveness of upgrading a passive crossing to flashing liexhts \\
\hline E2 & Real & Effectiveness of upgrading a passive crossing to gates \\
\hline E 3 & Real & Effectiveness of upgrading a flashing-lights crossing to gates \\
\hline GATE & Character & The word "GATE" \\
\hline ID & Character & Crossing identification number \\
\hline IFLAG & Integer & Flag to tell if subroutine GATES has been called 0 - no, 1 - yes, 2 - yes, money ran out \\
\hline K & Integer & Do loop index \\
\hline LIGHT & Character & The woru "LIGHT" \\
\hline HAX & Integer & Index of the largest accident reduction/cost ratio being stored in ECGATE \\
\hline MAXAHT & Real & Total amount of money available \\
\hline MIN & Integer & Index of the smallest accident reduction/cost ratio being stored in BCGATE \\
\hline PA & Character & Predicted ácidents stored for passive crossing with single track \\
\hline \(P C\) & Integer & Present warning device class stored for passive crossings with single track \\
\hline TRACKS & Integer & Total number of tracks \\
\hline TKKS & Integer & Total number of tracks stored for passive crossings with single track \\
\hline XID & Character & Crossimg identification number stored for passive crossings with single track \\
\hline
\end{tabular}

Sample output from the resource allocation algorithm program is shown in Figure 5-12. This output is then sorted in descending order of accident reduction/cost ratio (columns 1-8) for input into the resource allocation report program.

\author{
The resource allocation report program (Figure 5-13) calculates the decision criteria and generates the output in a report format. The decision criteria, \(D C_{1}, D C_{2}, D C_{3}\) and \(D C_{4}\), are calculated from equations \(4-4,4-5,4-6\) and 4-7, respectively, described in Section 4.2.5. If the crossing being considered is passive, single-track, the program calculates \(D C_{1}\) and \(D C_{2}\). If the crossing is passive, multiple-track, \(D C_{3}\) is calculated. If the crossing has flashing lights, \(D C_{4}\) is calculated. Sample output from the resource allocation model is shown in Figure 5-14.
}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
O \\
\multirow{2}{8}{} \\
0 \\
0 \\
0 \\
4
\end{tabular} & & & \[
\begin{aligned}
& \text { H } \\
& 0 \\
& 8
\end{aligned}
\] & \\
\hline 9.7655 & \(0.7507740854 \mathrm{~J}^{17}\) & T \({ }_{\text {2Gate }}\) & 49200 & 0.4805 \\
\hline 6.3174 & 0.tE56740852V7 & 3GATE & 49200 & 0.3108 \\
\hline 6.1469 & \(0.4725833473 E 7\) & 2GATE & 49200. & 0.3024 \\
\hline \(5.38,65\) & 0.4141740744 Y 6 & 2 GATE & 49200 & 0.2650 \\
\hline 5.3503 & \(0.4113740855 R 7\) & 2GATE & 492 CO & C. 2632 \\
\hline 4.7666 & 0.366483347517 & 2GATE & 492 CO & 0.2345 \\
\hline 4.4546 & 0.3424804244 G 7 & lGATE & 49200. & 0.2192 \\
\hline 4.2812 & \(0.3291740856 \times 7\) & 2GATE & 492 CO & 0.2106 \\
\hline 4.2778 & \(0.3289823479 \vee 7\) & 2GATE & 49200. & 0.2105 \\
\hline 4.0140 & \(0.3 C 86740857 \mathrm{E7}\) & 3GATE & 49200 & 0.1975 \\
\hline 3.6990 & 0.2844833481 hi 7 & 3GATE & 492 CO . & 0.1820 \\
\hline 2.7290 & \(0.2 C 98740842 \mathrm{P} 7\) & 7GATE & 49200. & 0.1343 \\
\hline 2.6471 & \(0.1724740901 P 4\) & lGATE & 54700. & 0.1448 \\
\hline 2.5819 & 0.168174085814 & lGATE & 547CC. & 0.1412 \\
\hline 2.4525 & 0.191674073417 & 2GATE & 49200. & 0.1226 \\
\hline 2.4564 & C. 188883347647 & 3GATE & 49200. & 0.1209 \\
\hline 2.C8C3 & C. \(1355740841 \mathrm{H}_{4}\) & 3GATE & 54700. & 0.1138 \\
\hline 1.8136 & 0.1 C24833425P4 & LLIGHT & 367 CO & 0.0666 \\
\hline 1.6501 & 0.3932740914 R 4 & ILIGHT & 367 CO . & 0.0606 \\
\hline 1.6054 & \(0.1234804193 Y 7\) & 3GATE & 492 CO . & 0.6790 \\
\hline 1.4362 & 0.081180423804 & ILIGHI & 36700. & 0.0527 \\
\hline
\end{tabular}
IHIS PROGRAN COMPUTES ItE DECISICN CRITERIA AND PRINTS the output of the resoukce allocaticn algurithm in a REPORT FORMAT
UNIT 20 - Final benefit/cost ratio inplt file scrted IN DESCENDING ORDER OF BENEFIT/COST RATIO
UNIT 21 - REPCRT OUTPUT FILE
IJNit 22 - CGSt/EFFECTIVENESS/EUJGET LEVEL INPUT FILE UNIT 23 - I NPUT FILE FOR LOWEST COST/BENEFIT RATIO UNIT 5 - INTERACTIVE INPUT FILE FOR RUN TITLE
INTEGER ID(2), CLASS,TRACKS,WARN,TITLE(3),C1.C2,C3,DEVICE(2,7),
```

CATA DEVICE/'NONE ',' SIGN',
' STOP ', 'SIGN ',
'CROSS'. ${ }^{\text {BUCK }}$ ',
'SPECI', "AL ',

- HWY S','GNL !',
'LIGHT','
$T \operatorname{COS} T=0$
TBEN $=0$.
WKITE 5 5,10)
FIDRMAT(' ENTER TITLE OF RUN: ')
READ(5, 20) TITLE
FORMAT(3A5)
REAO (22,30) C1,C2,C 3
FORMAT(3(I9,1X))
READ (22,40) E1,E2,E3
FORMAT(3F10.2)
READ (22,50) MAXAMT
FORHAT(I9)
READ $(23,60)$ BCMIN
FORMAT(F8.4)
$\mathrm{Rl}=\mathrm{El} / \mathrm{Cl}$
$R 2=(E 2-E 1) /(C 2-C 1)$
R3=E2/C2
R4=E3/C 3
CALL CATE([AY)
PAGE=1
WRITE(21,101) DAY,TITLE,MAXAMT,C1,C2,C3,E1,E2,E3
FORMATI'1', T8,2A5,T44,
'RAIL-HIGHN AY CROSSING RESOURCE ALLGCATION RESULTS',
T120,'PAGE 1'/T45,'FGR ',3A5, TOTAL BUDGET: \$',19/
T47,'WARNING DEVICE P--FL P--G FL-G'/
'+', T67,'>', T76,'>', T86, '>'/T49, 'COST:',
7X,3(2X,'\$', 16 )/T49,'EFFECTIVENESS: $3(F 3.2,6 X) / 1$
LINE $=7$
GO TO 110
105
106

```
PAGE=PAGE+1
hRITE(21,106) DAY,PAGE
FORMATI'1',T8,2A5,T120,'PAGE',[3/)
LINE=3
```

```
WRITE(21,111)
FORMAT(T31,'BENEFIT/',T90.'CUMULATIVE'/T8,'CROSSING ', -PREDICTED COST RATIO RECOMMENDED PRESENT \(\quad\), -total CIMULATIVE BENEFIT DECISION', 'CRITERIA VALUES'/tio,'ID ACCIDENTS ', - (REDUCED ACC/ WARNING WARNING OF ', 'COST \begin{tabular}{c}
DEVICE (REDUCED'/TIB,' (ACC/YR) \\
\\
\hline
\end{tabular}
```



```
LINE=LINE+6
READ(20,201,END=997) BENCOS,A,ID,CLASS,TRACKS,WARN,COST, EEN
FORMATIF8.4,F7.4,A4,A3,I1, I2,A5,F7.0,F7.4)
TCOST \(=T \operatorname{COS} T+\operatorname{COST}\)
\(T B E N=T B E N+B E N\)
\(\operatorname{KCOST}=T \operatorname{COST} / 1000+0.5\)
IFICLASS.GT.4) GO TO 230
IFITRACKS.GT.1) GO TO 220
IFIR2.GT.RII GO TO 220
LCl \(=\) BCMIN/ (A*R1*10**6)
\(D C 2=B C N I N /(A * R 2 * 10 * * 6)\)
WRITE(21,205) ID, A, BENCOS,WARN, (DEVICE(J,CLASS), J=1, 2), IRACKS, KCOST,TBEN,CC1,DC2
FORMAT(T8, A4, A3, T23,F5,2,T32,F5.2,T47,A5,T57,2A5, T70,12,T79, \(15, \mathrm{~T} 92, F 5.1, \mathrm{~T} 100,2 \mathrm{F7.31}\)
COTD 250
\([C 3=3 C M I N /(A * R 3 * 10 * * 6)\)
WRITE(21,211) IO, A, BENCOS,WARN,(DEVICEIJ,CLASS),J=1,21,TRACKS, KCOST,TBEN, CC 3
FORMATIT8, A4, A3, T20,F5.2,T32,F5.2,T47,A5,T57,2A5,
T70.12.T79, I5,T92,F5.1, T114,F7.3)
GO TO 250
CC4 \(=8 \mathrm{CM}\) IN/ (A*R4*10**6)
WRITE (21,221) ID, A, BENCOS,WARN, IDEV[CEIJ,CLASSI,J=1,2),TRACKS, KCOST,TBEN, CC4
FORMATIT \(8, \Delta 4, A 3, T 20, F 5.2,132, F 5.2, T 47, A 5, T 57,2 A 5\),
T70, I2, T79, I5, T92,F5.1, T121,F7.3)
\(\operatorname{LINE}=\mathrm{LINE}+1\)
IFILINE.GT.60) GO TC 105
GO TO 200
STOP
END
```

	2-0C1-81			RAIL-HIGHWAY   WARINING COST: [FFECTI		ESUURCE   OTAL BUD   FL   7 FO \$			PAGE			
	$\begin{gathered} \text { Crass ing } \\ \text { ID } \end{gathered}$	PREDICTED   accioents   (ACC/YR)	ACC REDUCTION/ COST RATIU (requced acc/	recommendes) warning DEVICE	phesent hafning UEVICE	TUTAL   H OF   TRACKS	cumulative cost   (\$ Trcusand)	cumclailve aCC REDUCTION (keuuced ACC/YRI	OEC 15 UCL	CN CR	LKIA	valles   LC4
	740854 J	0.75	7.77	gate	LIGHt	2	49	0.5				0.147
	740852 V	0.49	5.32	GATE	LIGHT	3	¢ 8	0.8				$\checkmark .227$
	833473 E	c. 47	0.15	gate	LIGHI	2	148	1.1				U.234
	740744 Y	0.41	5.39	gate	HWY SGNL	2	157	1.4				0.267
	7408558	0.41	'. 35	gate	LIGHit	2	240	1.6				$0.26 E$
	8334751	0.37	4.77	gate	LISHI	2	245	1.9				4.301
	204244G	c. 34	4.45	gate	LIGHI	1	344	2.1				0.322
	$740856 \times$	0.33	-. 28	gate	LIGHT	2	354	2.3				0.335
$\stackrel{\infty}{\sim}$	833479V	C. 33	+. 28	gate	LIGHT	2	443	$<.5$				0.330
N	740857 E	0.31	4.01	GATE	LIGHI	3	452	2.7				0.358
	833481\%	0.28	3.70	gate	Light	3	541	2.9				0.388
	740842P	c. 21	2.73	gare	LIGHI	7	590	3.0				$0.5<6$
	740901 P	0.17	2.65	gate	chussbuck	1	645	3.2	0.476	C. 189		
	740858 L	0.17	2.58	GATE	ckussbuck		70.	1.3	0.482	c.b0s		
	740734 T	0.19	2.49	gare	LIGHt	2	744	3.4				0.576
	8334764	C. 19	2.46	GATE	LIGHt	3	758	3.5				0.3ts
	740841 h	0.14	2.08	GATE	crossisuck	3	853	3.7			c.esc	
	B33425P	0.10	1.81	LIGHT	crossbuck	1	850	3.7	0.752	1.325		
	140914R	0.09	1.65	LIGHT	ckussbuck	1	926	3.8	0.87 C	1.46 C		
	804193Y	C. 12	1.61	GATE	LIGHT	3	976	3.9				0.85
	8042380	0.08	1.44	LIGHT	crussbuck	1	1012	3.9	1.003	1.678		

FIGURE 5-14. SAMPLE OUTPUT FROM THE RESOURCE ALLOCATION REPORT PROGRAM

## REFERENCES

1. J. llitz, ed., Summary Statisties of the National Kailroad-Highway Crossing Inventory for Public at Grade Crossings, No. FRA-RPD-78-20, (Washington, D.C.: Federal Railruad Administration, September 1970).
2. Federal Highway Administration, Kailroad-Highway Grade Crossing Hendbook, (Washington, D.C.: U.S. Department of Transportation, August 1978).
3. P. Mengert, Rail-Highway Crossing Hazard Prediction Research Results, No. FRA-KRS-30-02, (Washington, D.C.: U.S. Department of Transportation, March 1980).
4. E. Farr, Rail-Highway Crossing Resource Allocation Model, No. FRA-RRS-81-001, (Washington, D.C.: U.S. Department of Transportation, April 19も1).
5. J. Heisler, and J. Horrissey, Rail-Highway Crossing Warning Device Life Cycle Cost Analysis, FRA-RRS-80-003, (Washington, D.C.: U.S. Department of Transportation, 1980).
6. Association of American Railroads, Econonics and Finance Department, "Indexes of Railroad Material Prices and wage Rates-Railroads of Class I," (Washington, D.C. Published Quarterly).
7. J. Horrissey, The Effectiveness of Flashing Lights and Flashing Lights with Gates in Feducing Accident Frequency at Public Rail-Highway Crossings, FKA-RRS-80-005, (Washington, D.C.: U.S. Department of Transportation, March 1930).
8. California Public Utilities Commission, The Effectiveness of Automatic Protection in Reducing Accident Frequency and Severity at Public Grade Crossings in California, (San Francisco: State of California, June 30, 1974).
